Sums of characters with prime numbers in an arithmetic progression
Izvestiya. Mathematics, Tome 5 (1971) no. 3, pp. 485-501
Cet article a éte moissonné depuis la source Math-Net.Ru
One of the corollaries of the fundamental theorem in this paper is a theorem about power residues and nonresidues $\operatorname{mod}q$ in sequences of the form $p+k$, where the prime numbers $p$ belong to the beginning of an arithmetic progression.
@article{IM2_1971_5_3_a1,
author = {A. A. Karatsuba},
title = {Sums of characters with prime numbers in an arithmetic progression},
journal = {Izvestiya. Mathematics},
pages = {485--501},
year = {1971},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a1/}
}
A. A. Karatsuba. Sums of characters with prime numbers in an arithmetic progression. Izvestiya. Mathematics, Tome 5 (1971) no. 3, pp. 485-501. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a1/
[1] Vinogradov I. M., “Otsenka odnoi summy, rasprostranennoi na prostye chisla arifmeticheskoi progressii”, Izv. AN SSSR. Ser. matem., 30 (1966), 481–496 | MR | Zbl
[2] Karatsuba A. A., “Summy kharakterov s prostymi chislami”, Izv. AN SSSR. Ser. matem., 34 (1970), 229–321
[3] Linnik Yu. V., “On the least prime in an arithmetic progression. I. The bacic theorem”, Matem. sb., 15(57) (1944), 139–178 | MR | Zbl
[4] Fogels E. K., “O prostykh chislakh v nachale arifmeticheskoi progressii”, Dokl. AN SSSR, 102:3 (1955), 455–456 | MR | Zbl