Sums of characters with prime numbers in an arithmetic progression
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 485-501

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the corollaries of the fundamental theorem in this paper is a theorem about power residues and nonresidues $\operatorname{mod}q$ in sequences of the form $p+k$, where the prime numbers $p$ belong to the beginning of an arithmetic progression.
@article{IM2_1971_5_3_a1,
     author = {A. A. Karatsuba},
     title = {Sums of characters with prime numbers in an arithmetic progression},
     journal = {Izvestiya. Mathematics },
     pages = {485--501},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a1/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Sums of characters with prime numbers in an arithmetic progression
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 485
EP  - 501
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a1/
LA  - en
ID  - IM2_1971_5_3_a1
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Sums of characters with prime numbers in an arithmetic progression
%J Izvestiya. Mathematics 
%D 1971
%P 485-501
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a1/
%G en
%F IM2_1971_5_3_a1
A. A. Karatsuba. Sums of characters with prime numbers in an arithmetic progression. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 485-501. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a1/