Nontrivial solutions of boundary value problems for semilinear elliptic equations
Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 445-457.

Voir la notice de l'article provenant de la source Math-Net.Ru

We find conditions under which boundary value problems for semilinear elliptic equations of order $2m$ have at least two solutions.
@article{IM2_1971_5_2_a8,
     author = {V. S. Klimov},
     title = {Nontrivial solutions of boundary value problems for semilinear elliptic equations},
     journal = {Izvestiya. Mathematics },
     pages = {445--457},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a8/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - Nontrivial solutions of boundary value problems for semilinear elliptic equations
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 445
EP  - 457
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a8/
LA  - en
ID  - IM2_1971_5_2_a8
ER  - 
%0 Journal Article
%A V. S. Klimov
%T Nontrivial solutions of boundary value problems for semilinear elliptic equations
%J Izvestiya. Mathematics 
%D 1971
%P 445-457
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a8/
%G en
%F IM2_1971_5_2_a8
V. S. Klimov. Nontrivial solutions of boundary value problems for semilinear elliptic equations. Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 445-457. http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a8/

[1] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[2] Bakelman I. Ya., Geometricheskie metody resheniya ellipticheskikh uravnenii, Nauka, M., 1965 | MR

[3] Krasnoselskii M. A., Pokornyi Yu. V., “Nenulevye resheniya uravnenii s silnymi nelineinostyami”, Matem. zametki, 5:2 (1969), 253–260 | MR

[4] Agmon S., Duglis A., Nirenberg L., Otsenki reshenii ellipticheskikh uravnenii vblizi granitsy, IL, M., 1962

[5] Shekhter M., “Obschie granichnye zadachi dlya ellipticheskikh uravnenii v chastnykh proizvodnykh”, Matematika, 4:5 (1960), 93–122

[6] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[7] Sobolev S. L., “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4(46) (1938), 471–497 | Zbl

[8] Berezanskii Yu. M., Roitberg Ya. A., “Teorema o gomeomorfizmakh i funktsii Grina dlya obschikh ellipticheskikh granichnykh zadach”, Ukr. matem. zh., 19:5 (1967), 3–32 | MR | Zbl

[9] Agmon C., “On the Eigenfunctions and the Eigenvalues of General Elliptic Boundary Value Problems”, Comm. Pure and Appl. Math., 15:2 (1962), 119–147 | DOI | MR | Zbl

[10] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi matem. nauk, 20:5 (1965), 3–120 | MR | Zbl

[11] Ilin V. P., “Nekotorye neravenstva v funktsionalnykh prostranstvakh i ikh primenenie k issledovaniyu skhodimosti variatsionnykh protsessov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 53, 1959, 64–127

[12] Roitberg Ya. A., Sheftel Z. G., “Formula Grina i teorema o gomeomorfizmakh dlya ellipticheskikh sistem”, Uspekhi matem. nauk, 22:5 (1967), 181–182 | MR | Zbl