On Szeg\"o's limit theorem
Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 421-444.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article a problem in the theory of Toeplitz forms is analyzed. The problem was first formulated and solved by G. Szegö in 1952, and since solved by many authors under more general conditions. A solution is given to Szegö's problem under conditions which are best possible, and also some refinements of the problem are examined.
@article{IM2_1971_5_2_a7,
     author = {B. L. Golinskii and I. A. Ibragimov},
     title = {On {Szeg\"o's} limit theorem},
     journal = {Izvestiya. Mathematics },
     pages = {421--444},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a7/}
}
TY  - JOUR
AU  - B. L. Golinskii
AU  - I. A. Ibragimov
TI  - On Szeg\"o's limit theorem
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 421
EP  - 444
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a7/
LA  - en
ID  - IM2_1971_5_2_a7
ER  - 
%0 Journal Article
%A B. L. Golinskii
%A I. A. Ibragimov
%T On Szeg\"o's limit theorem
%J Izvestiya. Mathematics 
%D 1971
%P 421-444
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a7/
%G en
%F IM2_1971_5_2_a7
B. L. Golinskii; I. A. Ibragimov. On Szeg\"o's limit theorem. Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 421-444. http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a7/

[1] Verblynsky S., “On positive harmonic functions. II”, Proc. London Math. Soc., 40 (1935), 290–320 | DOI

[2] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i na otrezke, Fizmatgiz, M., 1958 | Zbl

[3] Grenader U., Sege G., Teplitsevy formy i ikh prilozheniya, IL, M., 1961

[4] Kac M., “Toeplitz matrices, translation kernels and a related probleme in probability”, Duke Math. J., 21 (1954), 501–510 | DOI | MR

[5] Baxter G., “A convergence equivalence related to polynomials orthogonal on the unit circle”, Trans. Amer. Math. Soc., 99:3 (1961), 471–487 | DOI | MR | Zbl

[6] Hirschman J., “On a theorem of Szegö, Kac and Baxter”, J. analyse, math., 14 (1965), 225–234 | DOI | MR | Zbl

[7] Geronimus Ya. L., “Ob odnoi zadache G. Sege, M. Katsa, G. Bakstera i Dzh. Girshmana”, Izv. AN SSSR. Ser. matem., 31 (1967), 289–304 | MR | Zbl

[8] Kpein M. G., “O nekotorykh novykh banakhovykh algebrakh i teoremakh tipa Vinera–Levi dlya ryadov i integralov Fure”, Matem. issled., t. 1, AN Moldavskoi SSR, Kishinev, 1966, 82–109

[9] Ibragimov I. A., “Ob odnoi teoreme G. Sege”, Matematicheskie zametki, 3:6 (1968), 693–702 | MR | Zbl

[10] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[11] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[12] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960