Torsion of elliptic curves
Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 289-318.

Voir la notice de l'article provenant de la source Math-Net.Ru

The torsion of an elliptic curve over a number field is proved to be bounded.
@article{IM2_1971_5_2_a2,
     author = {V. A. Dem'yanenko},
     title = {Torsion of  elliptic curves},
     journal = {Izvestiya. Mathematics },
     pages = {289--318},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a2/}
}
TY  - JOUR
AU  - V. A. Dem'yanenko
TI  - Torsion of  elliptic curves
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 289
EP  - 318
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a2/
LA  - en
ID  - IM2_1971_5_2_a2
ER  - 
%0 Journal Article
%A V. A. Dem'yanenko
%T Torsion of  elliptic curves
%J Izvestiya. Mathematics 
%D 1971
%P 289-318
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a2/
%G en
%F IM2_1971_5_2_a2
V. A. Dem'yanenko. Torsion of  elliptic curves. Izvestiya. Mathematics , Tome 5 (1971) no. 2, pp. 289-318. http://geodesic.mathdoc.fr/item/IM2_1971_5_2_a2/

[1] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR

[2] Manin Yu. I., “$p$-kruchenie ellipticheskikh krivykh ravnomerno ogranicheno”, Izv. AN SSSR. Ser. matem., 33 (1969), 459–465 | MR | Zbl

[3] Parshin A. N., “Izogenii i kruchenie ellipticheskikh krivykh”, Izv. AN SSSR. Ser. matem., 34 (1970), 409–425

[4] Novodvorskii M. E., Pyatetskii-Shapiro I. I., “Nekotorye zamechaniya o kruchenii ellipticheskikh krivykh”, Matem. sb., 82 (1970), 309–316 | MR | Zbl

[5] Demyanenko V. A., “O tochkakh krucheniya ellipticheskikh krivykh”, Izv. AN SSSR. Ser. matem., 34 (1970), 757–775