Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 161-191
Voir la notice de l'article provenant de la source Math-Net.Ru
For the spectral function $\tau(\lambda)$ of the generalized second order boundary problem
\begin{gather*}
-\frac d{dM(x)}\biggl[y'_-(x)-\int_{-0}^{x-0}y(s)\,dQ(s)\biggr]-\lambda y(x)=0\qquad(0\leq x),\\
y'_-(0)=m,\qquad y(0)=n,
\end{gather*}
and for the function $\eta(\lambda)$, which may belong to an extremely large class of positive functions that are nonincreasing on $[1,+\infty)$, the problem of characterizing the growth of the function $\tau(\lambda)$ as $\lambda\uparrow+\infty$ and of the convergence of the integral $\int^{+\infty}\eta(\lambda)\,d\tau(\lambda)$ is connected with the behavior as $x\downarrow0$ of the function $M(x)$.
@article{IM2_1971_5_1_a9,
author = {I. S. Kats},
title = {Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end},
journal = {Izvestiya. Mathematics },
pages = {161--191},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a9/}
}
TY - JOUR AU - I. S. Kats TI - Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end JO - Izvestiya. Mathematics PY - 1971 SP - 161 EP - 191 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a9/ LA - en ID - IM2_1971_5_1_a9 ER -
%0 Journal Article %A I. S. Kats %T Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end %J Izvestiya. Mathematics %D 1971 %P 161-191 %V 5 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a9/ %G en %F IM2_1971_5_1_a9
I. S. Kats. Integral characteristics of the growth of spectral functions for generalized second order boundary problems with boundary conditions at a regular end. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 161-191. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a9/