Semisimple algebraic groups which are split over a~quadratic extension
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 57-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider algebraic groups defined over a field $k$ and containing a maximal torus $T$ which is defined and anisotropic over $k$ and split over a given quadratic extension $K$ of $k$. We study certain structural features of such groups, and the results obtained are used to investigate the behavior of these groups over special fields.
@article{IM2_1971_5_1_a3,
     author = {B. Yu. Weisfeiler},
     title = {Semisimple algebraic groups which are split over a~quadratic extension},
     journal = {Izvestiya. Mathematics },
     pages = {57--72},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a3/}
}
TY  - JOUR
AU  - B. Yu. Weisfeiler
TI  - Semisimple algebraic groups which are split over a~quadratic extension
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 57
EP  - 72
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a3/
LA  - en
ID  - IM2_1971_5_1_a3
ER  - 
%0 Journal Article
%A B. Yu. Weisfeiler
%T Semisimple algebraic groups which are split over a~quadratic extension
%J Izvestiya. Mathematics 
%D 1971
%P 57-72
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a3/
%G en
%F IM2_1971_5_1_a3
B. Yu. Weisfeiler. Semisimple algebraic groups which are split over a~quadratic extension. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 57-72. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a3/

[1] Dzhekobson N., Stroenie kolets, GIIL, M., 1961

[2] Serr Zh.-P., Kogomologii Galua, Mir, M., 1968 | MR

[3] Borel A., Tits J., “Groupes reductifs”, Publ. Math. IHES, 1965, no. 27, 55–151 | MR

[4] O'Meara O. T., Introduction to quadratic forms, Springer, Berlin, Götingen, Heidelberg, 1963 | MR

[5] Satake I., “On the theory of reductive algebraic groups over a perfect field”, J. Math. Soc. Japan, 15:2 (1963), 210–235 | MR | Zbl

[6] Tits J., “Groupes semi-simples isotropes”, Colloq. Théorie des Groupes Algébriques (Bruxelles, 1962), Librairie Universitaire, Louvain, 1962, 137–147 | MR

[7] Tits J., “Classification of algebraic semi-simple groups”, Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R.I., 1966, 33–62 | MR

[8] Albert A. A., Structure of algebras, Amer. Math. Soc. Coll. Publ., 24, N. Y., 1939 | MR | Zbl

[9] Albert A. A., “A construction of exceptional Jordan division algebras”, Ann. Math., 67:1 (1958), 1–28 | DOI | MR | Zbl

[10] Veisfeiler B. Yu., “Nekotorye svoistva osobykh poluprostykh algebraicheskikh grupp nad nezamknutymi polyami”, Tr. Mosk. Matem. Ob-va, 20 (1968), 110–136

[11] Démazure M., “Schémas en groupes réductifs”, Bull. Soc. Math. France, 93:4 (1965), 369–414 | MR