Rings of definition of dense subgroups of semisimple linear groups
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate the question: What is the smallest ring over which the elements of a dense subgroup (in the Zariski topology) of a emisimple algebraic group can be written down simultaneously for various rational linear representations?
@article{IM2_1971_5_1_a2,
     author = {\`E. B. Vinberg},
     title = {Rings of definition of dense subgroups of semisimple linear groups},
     journal = {Izvestiya. Mathematics },
     pages = {45--55},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a2/}
}
TY  - JOUR
AU  - È. B. Vinberg
TI  - Rings of definition of dense subgroups of semisimple linear groups
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 45
EP  - 55
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a2/
LA  - en
ID  - IM2_1971_5_1_a2
ER  - 
%0 Journal Article
%A È. B. Vinberg
%T Rings of definition of dense subgroups of semisimple linear groups
%J Izvestiya. Mathematics 
%D 1971
%P 45-55
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a2/
%G en
%F IM2_1971_5_1_a2
È. B. Vinberg. Rings of definition of dense subgroups of semisimple linear groups. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a2/

[1] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 1,2, IL, M., 1963

[2] Vinberg E. B., “Diskretnye gruppy, porozhdennye otrazheniyami, v prostranstvakh Lobachevskogo”, Matem. sb., 72(114) (1967), 471–488 | MR | Zbl