Control of Markov processes and $W$-spaces
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 233-266

Voir la notice de l'article provenant de la source Math-Net.Ru

Problems in the control of continuous Markov processes on a semicompactum by two players with conflicting interests are studied. The basic content of the paper is a derivation of Bellman's equations in the case where control is exercised for an infinite time (Theorem 3), and in the case of a problem of optimal stopping (Theorem 6). The results are illustrated by two examples (Theorems 1 and 2).
@article{IM2_1971_5_1_a14,
     author = {N. V. Krylov},
     title = {Control of  {Markov} processes and $W$-spaces},
     journal = {Izvestiya. Mathematics },
     pages = {233--266},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a14/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Control of  Markov processes and $W$-spaces
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 233
EP  - 266
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a14/
LA  - en
ID  - IM2_1971_5_1_a14
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Control of  Markov processes and $W$-spaces
%J Izvestiya. Mathematics 
%D 1971
%P 233-266
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a14/
%G en
%F IM2_1971_5_1_a14
N. V. Krylov. Control of  Markov processes and $W$-spaces. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 233-266. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a14/