Bases in uniformly convex and uniformly flattened Banach spaces
Izvestiya. Mathematics, Tome 5 (1971) no. 1, pp. 220-225
Cet article a éte moissonné depuis la source Math-Net.Ru
The aim of this article is to obtain two-sided estimates for the norm of an element $x$ in a uniformly convex and uniformly flattened Banach space $E$ in terms of $l_p$-norms of the sequence of coefficients which occur in the expansion of $x$ in a basis $\{e_i\}^\infty_1$ .
@article{IM2_1971_5_1_a12,
author = {V. I. Gurarii and N. I. Gurarii},
title = {Bases in uniformly convex and uniformly flattened {Banach} spaces},
journal = {Izvestiya. Mathematics},
pages = {220--225},
year = {1971},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a12/}
}
V. I. Gurarii; N. I. Gurarii. Bases in uniformly convex and uniformly flattened Banach spaces. Izvestiya. Mathematics, Tome 5 (1971) no. 1, pp. 220-225. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a12/
[1] Grinblyum M. M., “Nekotorye teoremy o bazise v prostranstve tipa (V)”, Dokl. AN SSSR, 31 (1941), 428–432
[2] Gurevich L. A., “O bazise v sopryazhennom prostranstve”, Tr. seminara po funktsionalnomu analizu, t. 6, Voronezh, 1958, 42–43
[3] Day M. M., “Uniform convexity in factor and conjugate spaces”, Ann. of Math. (2), 45 (1944), 375–385 | DOI | MR | Zbl