Differential properties of solutions of elliptic boundary-value problems with power singularities on the right-hand sides
Izvestiya. Mathematics, Tome 5 (1971) no. 1, pp. 211-219
Cet article a éte moissonné depuis la source Math-Net.Ru
Exact bounds are obtained for the derivatives of the solutions of general boundary-value problems for elliptic equations of order $2m$ in the neighborhood of a power singularity. The order of the singularity is arbitrary, and it can be at an interior point or on the boundary.
@article{IM2_1971_5_1_a11,
author = {Yu. P. Krasovskii},
title = {Differential properties of solutions of elliptic boundary-value problems with power singularities on the right-hand sides},
journal = {Izvestiya. Mathematics},
pages = {211--219},
year = {1971},
volume = {5},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a11/}
}
TY - JOUR AU - Yu. P. Krasovskii TI - Differential properties of solutions of elliptic boundary-value problems with power singularities on the right-hand sides JO - Izvestiya. Mathematics PY - 1971 SP - 211 EP - 219 VL - 5 IS - 1 UR - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a11/ LA - en ID - IM2_1971_5_1_a11 ER -
Yu. P. Krasovskii. Differential properties of solutions of elliptic boundary-value problems with power singularities on the right-hand sides. Izvestiya. Mathematics, Tome 5 (1971) no. 1, pp. 211-219. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a11/
[1] Krasovskii Yu. P., “Svoistva funktsii Grina i obobschennye resheniya ellipticheskikh granichnykh zadach”, Izv. AN SSSR. Ser. matem., 33 (1969), 109–137 | MR | Zbl
[2] Roitberg Ya. A., “O razreshimosti obschikh granichnykh zadach dlya ellipticheskikh uravnenii pri nalichii stepennykh osobennostei v pravykh chastyakh”, Ukr. matem. zh., 20:3 (1968), 412–417 | MR
[3] Krasovskii Yu. P., “Vydelenie osobennosti u funktsii Grina”, Izv. AN SSSR. Ser. matem., 31 (1967), 977–1010 | MR | Zbl
[4] Gelfand I. M., Shilov G. E., Obobschennye funktsii i deistviya nad nimi, Fizmatgiz, M., 1959
[5] Berezanskii Yu. M., Razlozhenie po sobstvennym funktsiyam samosopryazhennykh operatorov, Kiev, 1965