Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 193-210
Voir la notice de l'article provenant de la source Math-Net.Ru
We study classes of correct solvability of boundary value problems for systems of linear equations with constant coefficients of the form $\frac{\partial\bar u(x,t)}{\partial t}=P\bigl(\frac\partial{\partial x}\bigr)\bar u(x,t)$ in the layer $R^m\times[0,T]$ with boundary conditions consisting in prescribing certain components of the vectors $\bar u(x,0)$ and $\bar u (x,T)$ for $x\in R^m$.
@article{IM2_1971_5_1_a10,
author = {V. M. Borok},
title = {Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations},
journal = {Izvestiya. Mathematics },
pages = {193--210},
publisher = {mathdoc},
volume = {5},
number = {1},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/}
}
TY - JOUR AU - V. M. Borok TI - Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations JO - Izvestiya. Mathematics PY - 1971 SP - 193 EP - 210 VL - 5 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/ LA - en ID - IM2_1971_5_1_a10 ER -
V. M. Borok. Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 193-210. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/