Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 193-210.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study classes of correct solvability of boundary value problems for systems of linear equations with constant coefficients of the form $\frac{\partial\bar u(x,t)}{\partial t}=P\bigl(\frac\partial{\partial x}\bigr)\bar u(x,t)$ in the layer $R^m\times[0,T]$ with boundary conditions consisting in prescribing certain components of the vectors $\bar u(x,0)$ and $\bar u (x,T)$ for $x\in R^m$.
@article{IM2_1971_5_1_a10,
     author = {V. M. Borok},
     title = {Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations},
     journal = {Izvestiya. Mathematics },
     pages = {193--210},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/}
}
TY  - JOUR
AU  - V. M. Borok
TI  - Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 193
EP  - 210
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/
LA  - en
ID  - IM2_1971_5_1_a10
ER  - 
%0 Journal Article
%A V. M. Borok
%T Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations
%J Izvestiya. Mathematics 
%D 1971
%P 193-210
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/
%G en
%F IM2_1971_5_1_a10
V. M. Borok. Correctly solvable boundary value problems in an~infinite layer for systems of linear partial differential equations. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 193-210. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a10/

[1] Petrovskii I. G., “O probleme Koshi dlya sistem lineinykh uravnenii s chastnymi proizvodnymi v oblasti neanaliticheskikh funktsii”, Byull. un-ta (A), 1, no. 7, M., 1938

[2] Gelfand I. M., Shilov G. E., Nekotorye voprosy teorii differentsialnykh uravnenii, Obobschennye funktsii, vyp. 3, M., 1958 | Zbl

[3] Borok V. M., “Klassy edinstvennosti resheniya kraevoi zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii”, Matem. sb., 79(121) (1969), 293–304 | MR | Zbl

[4] Borok V. M., “Klassy edinstvennosti resheniya kraevoi zadachi v beskonechnom sloe”, Dokl. AN SSSR, 183:5 (1968), 995–998

[5] Borok V. M., “Klassy korrektnoi razreshimosti kraevoi zadachi v beskonechnom sloe”, Dokl. AN SSSR, 183:6 (1968), 1239–1241 | MR

[6] Borok V. M., “Teoremy tipa Fragmena–Lindelefa dlya reshenii nekotorykh differentsialnykh uravnenii v beskonechnom sloe”, Dokl. AN SSSR, 184:1 (1969), 9–11 | MR | Zbl

[7] Gelfand I. M., Shilov G. E., Prostranstva osnovnykh i obobschennykh funktsii, Obobschennye funktsii, vyp. 2, M., 1958 | Zbl