Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1971_5_1_a1, author = {S. G. Tankeev}, title = {On $n$-dimensional canonically polarized varieties and varieties of fundamental type}, journal = {Izvestiya. Mathematics }, pages = {29--43}, publisher = {mathdoc}, volume = {5}, number = {1}, year = {1971}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a1/} }
S. G. Tankeev. On $n$-dimensional canonically polarized varieties and varieties of fundamental type. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a1/
[1] Algebraicheskie poverkhnosti, Tr. matem. in-ta im. V. A. Steklova AN SSSR, LXXV, 1965 | MR | Zbl
[2] Kodaira K., “Pluricanonical systems on algebraic surfaces of general type”, Proc. Nat. Acad. Sci. USA, 58:3 (1967), 911–915 | DOI | MR | Zbl
[3] Kodaira K., “The theorem of Riemann–Roch on compact analytic surfaces”, Amer. J. Math., 73 (1951), 813–875 | DOI | MR | Zbl
[4] Matsusaka T., “Algebraic deformations of polarized varieties”, Nagoya Math. J., 31 (1968), 184–245 | MR
[5] Matsusaka T., “On canonically polarized varieties”, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 265–306 | MR
[6] Matsusaka T., Mumford D., “Two fundamental theorems on deformations of polarized varieties”, Amer. J. Math., 86:3 (1964), 668–684 | DOI | MR | Zbl
[7] Khironaka Kh., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR