On $n$-dimensional canonically polarized varieties and varieties of fundamental type
Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 29-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

We examine $n$-dimensional complex varieties of fundamental type. We prove the existence of a universal set of algebraic deformations of a canonically polarized variety over a field of characteristic zero.
@article{IM2_1971_5_1_a1,
     author = {S. G. Tankeev},
     title = {On $n$-dimensional canonically polarized varieties and varieties of fundamental type},
     journal = {Izvestiya. Mathematics },
     pages = {29--43},
     publisher = {mathdoc},
     volume = {5},
     number = {1},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a1/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On $n$-dimensional canonically polarized varieties and varieties of fundamental type
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 29
EP  - 43
VL  - 5
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a1/
LA  - en
ID  - IM2_1971_5_1_a1
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On $n$-dimensional canonically polarized varieties and varieties of fundamental type
%J Izvestiya. Mathematics 
%D 1971
%P 29-43
%V 5
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a1/
%G en
%F IM2_1971_5_1_a1
S. G. Tankeev. On $n$-dimensional canonically polarized varieties and varieties of fundamental type. Izvestiya. Mathematics , Tome 5 (1971) no. 1, pp. 29-43. http://geodesic.mathdoc.fr/item/IM2_1971_5_1_a1/

[1] Algebraicheskie poverkhnosti, Tr. matem. in-ta im. V. A. Steklova AN SSSR, LXXV, 1965 | MR | Zbl

[2] Kodaira K., “Pluricanonical systems on algebraic surfaces of general type”, Proc. Nat. Acad. Sci. USA, 58:3 (1967), 911–915 | DOI | MR | Zbl

[3] Kodaira K., “The theorem of Riemann–Roch on compact analytic surfaces”, Amer. J. Math., 73 (1951), 813–875 | DOI | MR | Zbl

[4] Matsusaka T., “Algebraic deformations of polarized varieties”, Nagoya Math. J., 31 (1968), 184–245 | MR

[5] Matsusaka T., “On canonically polarized varieties”, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 265–306 | MR

[6] Matsusaka T., Mumford D., “Two fundamental theorems on deformations of polarized varieties”, Amer. J. Math., 86:3 (1964), 668–684 | DOI | MR | Zbl

[7] Khironaka Kh., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 2–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR