On properties of bases after their orthogonalization
Izvestiya. Mathematics, Tome 4 (1970) no. 6, pp. 1429-1446
Cet article a éte moissonné depuis la source Math-Net.Ru
We wish to determine which $L^p$ spaces have bases formed by orthogonalizing a sequence of functions $\{f_n\}$ that is a basis in $C(0,1)$. We show that the answer to this question depends on the sequence of functions $\{f_n\}$ and also on the method of orthogonalization.
@article{IM2_1970_4_6_a8,
author = {V. M. Veselov},
title = {On properties of bases after their orthogonalization},
journal = {Izvestiya. Mathematics},
pages = {1429--1446},
year = {1970},
volume = {4},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a8/}
}
V. M. Veselov. On properties of bases after their orthogonalization. Izvestiya. Mathematics, Tome 4 (1970) no. 6, pp. 1429-1446. http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a8/
[1] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, M., 1958
[2] Banakh S., Kurs funktsionalnogo analizu, Kiiv, 1948
[3] Ulyanov P. L., “Nekotorye voprosy teorii ortogonalnykh i biortogonalnykh ryadov”, Izv. AN AzerbSCP. Ser. fiz., tekhn. i matem. nauk, 1965, no. 6, 11–13 | MR
[4] Ciesielski Z., “Properties of the orthonormal Franclin system”, Studia Math., 23:2 (1963), 141–157 | MR | Zbl
[5] Szlenk W., “Une remarque sur l'orthogonalisation des bases de Schauder dans l'espase $C$”, Coll. Math., 15:2 (1966), 297–301 | MR | Zbl
[6] Beselov V. M., “Ob ortogonalizatsii bazisov”, Matem. zametki, 6:6 (1969), 713–724 | MR | Zbl