On properties of bases after their orthogonalization
Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1429-1446
Voir la notice de l'article provenant de la source Math-Net.Ru
We wish to determine which $L^p$ spaces have bases formed by orthogonalizing a sequence of functions $\{f_n\}$ that is a basis in $C(0,1)$. We show that the answer to this question depends on the sequence of functions $\{f_n\}$ and also on the method of orthogonalization.
@article{IM2_1970_4_6_a8,
author = {V. M. Veselov},
title = {On properties of bases after their orthogonalization},
journal = {Izvestiya. Mathematics },
pages = {1429--1446},
publisher = {mathdoc},
volume = {4},
number = {6},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a8/}
}
V. M. Veselov. On properties of bases after their orthogonalization. Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1429-1446. http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a8/