Uniform approximation of functions by polynomials on Weil polyhedra
Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1250-1271.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that every function which is holomorphic in a nondegenerate Weil polyhedron and continuous on its closure may be uniformly approximated on its closure by polynomials.
@article{IM2_1970_4_6_a4,
     author = {A. I. Petrosyan},
     title = {Uniform approximation of functions by polynomials on {Weil} polyhedra},
     journal = {Izvestiya. Mathematics },
     pages = {1250--1271},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a4/}
}
TY  - JOUR
AU  - A. I. Petrosyan
TI  - Uniform approximation of functions by polynomials on Weil polyhedra
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1250
EP  - 1271
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a4/
LA  - en
ID  - IM2_1970_4_6_a4
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%T Uniform approximation of functions by polynomials on Weil polyhedra
%J Izvestiya. Mathematics 
%D 1970
%P 1250-1271
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a4/
%G en
%F IM2_1970_4_6_a4
A. I. Petrosyan. Uniform approximation of functions by polynomials on Weil polyhedra. Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1250-1271. http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a4/

[1] Helson H., Quigly F., “Existence of maximal ideals in algebras of continous functions”, Proc. Amer. Math. Soc., 8:1 (1957), 115–119 | DOI | MR | Zbl

[2] Chirka E. M., “Priblizhenie nepreryvnykh funktsii golomorfnymi na zhordanovykh dugakh v $C^n$”, Dokl. AN SSSR, 167:1 (1966), 38–40 | Zbl

[3] Wells R. O., “Holomorphic approximation on real-analytic submanifolds of a complex manifold”, Proc. Amer. Math. Soc., 17:6 (1966), 1272–1275 | DOI | MR | Zbl

[4] Chipka E. M., “Priblizhenie golomorfnymi funktsiyami na gladkikh mnogoobraziyakh v $C^n$”, Matem. sb., 78:1 (1969), 101–123

[5] Khenkin G. M., “Integralnoe predstavlenie funktsii, golomorfnykh v strogo psevdovypuklykh oblastyakh i nekotorye prilozheniya”, Matem. sb., 78:4 (1969), 611–632 | Zbl

[6] Bremermann H., “Die Charakterisierung Rungesher Gebiete durch plurisubharmonishe Functionen”, Math. Ann., 136 (1958), 173–186 | DOI | MR | Zbl

[7] Kallin E., “A non-local function algebra”, Proc. Nat. Acad. Sci. USA, 49:6 (1963), 821–824 | DOI | MR | Zbl

[8] Wermer J., “The hull of a curve in $C^n$”, Ann. Math., 68 (1958), 550–561 | DOI | MR | Zbl

[9] Bishop E., “Analyticity in certain Banach algebras”, Trans. Amer. Math. Soc., 102:3 (1962), 507–544 | DOI | MR | Zbl

[10] Vermer Dzh., Nekotorye voprosy teorii priblizhenii, IL, M., 1963

[11] Uolsh D., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi ploskosti, IL, M., 1961

[12] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, M., 1964 | MR

[13] Vitushkin A. G., “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, Uspekhi matem. nauk, XXII:6(138) (1967), 141–199

[14] Bishop E., “Some global problems in the theory of functions of several complex variables”, Amer. J. Math., 83:3 (1961), 479–498 | DOI | MR | Zbl

[15] Bishop E., “Differentiable manifolds in complex Euclidean space”, Duke Math. J., 32:1 (1965), 1–21 | DOI | MR | Zbl

[16] Bishop E., “A generalization of the Stone–Weierstrass theorem”, Pacific J. Math., 11:3 (1961), 777–783 | MR | Zbl

[17] Bishop E., “Minimalnaya granitsa funktsionalnykh algebr”, Nekotorye voprosy teorii priblizhenii, IL, M., 1963

[18] Markushevich L. A., “Ob approksimatsii nepreryvnykh funktsii mnogochlenami na zhordanovykh dugakh v prostranstve mnogikh kompleksnykh peremennykh”, Sib. matem. zh., 6:3 (1965), 528–545 | Zbl

[19] Markushevich L. A., “Priblizhenie mnogochlenami nepreryvnykh funktsii na zhordanovykh dugakh v prostranstve $K^n-n$-kompleksnykh peremennykh”, Sib. matem. zh., 2:2 (1961), 237–260 | Zbl

[20] Nirenberg R., Wells R. O., “Holomorphic approximation on real submanifolds of a complex manifold”, Bull. Amer. Math. Soc., 73:3 (1967), 378–381 | DOI | MR | Zbl

[21] Kallin E., “Polynomial convexity: the three spheres problem”, Proc. conf. Complex Analysis (Minneapolis, 1964), Berlin, Heidelberg, New York, 1965, 301–308 | MR

[22] Andreolli A., Stoll W., “Extension of holomorphic maps”, Ann. Math., 72:2 (1960), 312–349 | DOI | MR

[23] Stolzenberg G., “Polynomially and rationally convex sets”, Acta Math., 109:3–4 (1963), 259–289 | DOI | MR | Zbl

[24] Stolzenberg G., “Polynomially convex sets”, Bull. Amer. Math. Soc., 68:4 (1962), 382–387 | DOI | MR | Zbl

[25] Stolzenberg G., “A hull with no analytic structure”, J. Math. and Mech., 12:1 (1969), 103–111 | MR

[26] Wermer J., “Uniform approximation and maximal ideal spaces”, Bull. Amer. Math. Soc., 68:4 (1962), 298–305 | DOI | Zbl

[27] Hoffman K., “Minimal boundaries for analytic polyhedra”, Rend. Circolo mat. Palermo, 9:2 (1960), 147–160 | DOI | MR | Zbl

[28] Pudin U., “Podalgebry prostranstv nepreryvnykh funktsii”, Nekotorye voprosy teorii priblizhenii, IL, M., 1963