On the Fano surface of a nonsingular cubic in $P^4$
Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1207-1214.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we prove that the Fano surface of a nonsingular cubic in $P^4$ uniquely determines chat surface. In addition, we prove a weak Torelli theorem for Fano surfaces.
@article{IM2_1970_4_6_a1,
     author = {A. N. Tyurin},
     title = {On the {Fano} surface of a nonsingular cubic in $P^4$},
     journal = {Izvestiya. Mathematics },
     pages = {1207--1214},
     publisher = {mathdoc},
     volume = {4},
     number = {6},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a1/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - On the Fano surface of a nonsingular cubic in $P^4$
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1207
EP  - 1214
VL  - 4
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a1/
LA  - en
ID  - IM2_1970_4_6_a1
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T On the Fano surface of a nonsingular cubic in $P^4$
%J Izvestiya. Mathematics 
%D 1970
%P 1207-1214
%V 4
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a1/
%G en
%F IM2_1970_4_6_a1
A. N. Tyurin. On the Fano surface of a nonsingular cubic in $P^4$. Izvestiya. Mathematics , Tome 4 (1970) no. 6, pp. 1207-1214. http://geodesic.mathdoc.fr/item/IM2_1970_4_6_a1/

[1] Fano G., “Sul sistema $\infty^2$ rette contanto in una varieta cubica generate dello spazio a quatro dimensioni”, Atti R. Accad. Torino, 39 (1904), 778–792 | Zbl

[2] Bombieri E., Swinnerton-Dyer H. P. F., “On the lokal Zeta-function of a cubic treefold”, Annali della Scuola Norm. Sup. di Pisa(III), 21 (1967), 1–18 | MR