Orthogonal bases in $L^p$
Izvestiya. Mathematics, Tome 4 (1970) no. 5, pp. 1169-1181
Cet article a éte moissonné depuis la source Math-Net.Ru
The following theorem is proved: Given any interval $I\subset[1,2)$, there is an orthonormal system $\{\varphi_n\}$ defined on $[0,1]$ which is a basis in $L^p$ for all $p\in I$, but is not a basis in $L^q$ for any $q\in[1,\infty]\setminus I$. Here $L^\infty=C$.
@article{IM2_1970_4_5_a9,
author = {B. V. Ryazanov and A. N. Slepchenko},
title = {Orthogonal bases in $L^p$},
journal = {Izvestiya. Mathematics},
pages = {1169--1181},
year = {1970},
volume = {4},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a9/}
}
B. V. Ryazanov; A. N. Slepchenko. Orthogonal bases in $L^p$. Izvestiya. Mathematics, Tome 4 (1970) no. 5, pp. 1169-1181. http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a9/
[1] Slepchenko A. N., “Ob ortogonalnykh bazisakh v $L$”, Matem. zametki, 6:6 (1969), 749–758 | Zbl
[2] Ulyanov P. L., “Nekotorye voprosy teorii ortogonalnykh i biortogonalnykh ryadov”, Izv. AN AzerbSSR. Ser. fiz.-tekhn. i matem., 1966, no. 6, 11–13 | MR
[3] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958
[4] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR
[5] Schauder J., “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Z., 28:2 (1928), 317–320 | DOI | MR | Zbl
[6] Krein M., Milman D., Rutman M., “Ob odnom svoistve bazisa v prostranstve Banakha”, Zap. matem. ob-va (4), 16, Kharkov, 1940, 106–108 | MR
[7] Banakh S. S., Kurs funktsionalnogo analizu, Kiev, 1948