Estimation of Weyl sums with prime denominator
Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 1017-1041.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple proof is given of the theorem of A. Weil on the estimation of rational trigonometric sums of H. Weyl with prime denominator.
@article{IM2_1970_4_5_a3,
     author = {S. A. Stepanov},
     title = {Estimation of {Weyl} sums with prime denominator},
     journal = {Izvestiya. Mathematics },
     pages = {1017--1041},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a3/}
}
TY  - JOUR
AU  - S. A. Stepanov
TI  - Estimation of Weyl sums with prime denominator
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1017
EP  - 1041
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a3/
LA  - en
ID  - IM2_1970_4_5_a3
ER  - 
%0 Journal Article
%A S. A. Stepanov
%T Estimation of Weyl sums with prime denominator
%J Izvestiya. Mathematics 
%D 1970
%P 1017-1041
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a3/
%G en
%F IM2_1970_4_5_a3
S. A. Stepanov. Estimation of Weyl sums with prime denominator. Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 1017-1041. http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a3/

[1] Weil A., “On some exponential sums”, Proc. Nat. Acad. Sci. USA, 34:5 (1948), 204–207 | DOI | MR | Zbl

[2] Carlitz L,, Uchiyama S., “Bound for exponential sums”, Duke Math. J., 24:1 (1957), 37–41 | DOI | MR | Zbl

[3] Perelmuter G. I., “O probleme otsenki nekotorykh arifmeticheskikh summ”, Nekotorye voprosy teorii polei, Saratovsk. un-t, 1964, 6–15 | MR

[4] Postnikov A. G., Ergodicheskie voprosy teorii sravnenii i teorii diofantovykh priblizhenii, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 82, 1966 | MR

[5] Stepanov S. A., “O chisle tochek giperellipticheskoi krivoi nad prostym konechnym polem”, Izv. AN SSSR. Ser. matem., 33 (1969), 1171–1181 | MR | Zbl

[6] Hasse H., “Theorie der höheren Differentiale in einen algebraischen Funktionenkörper mit vollkommenen Konstantenkörper bei belibiger charakteristik”, J. reine und angew. Math., 175 (1936), 50–54 | Zbl

[7] Dedonne Zh., Differentsialnoe ischislenie v polyakh kharakteristiki $p>0$ (Mezhdunarodnyi matematicheskii kongress v Amsterdame), M., 1961