Homological determinacy of $p$-adic representations of rings with
Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 1001-1016.

Voir la notice de l'article provenant de la source Math-Net.Ru

For rings with power basis it is proved that if two modules which are free and finitely generated over the ring of $p$-adic integers have cohomology of identical behavior, then they are “almost isomorphic”.
@article{IM2_1970_4_5_a2,
     author = {A. V. Yakovlev},
     title = {Homological determinacy of $p$-adic representations of rings with},
     journal = {Izvestiya. Mathematics },
     pages = {1001--1016},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a2/}
}
TY  - JOUR
AU  - A. V. Yakovlev
TI  - Homological determinacy of $p$-adic representations of rings with
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1001
EP  - 1016
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a2/
LA  - en
ID  - IM2_1970_4_5_a2
ER  - 
%0 Journal Article
%A A. V. Yakovlev
%T Homological determinacy of $p$-adic representations of rings with
%J Izvestiya. Mathematics 
%D 1970
%P 1001-1016
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a2/
%G en
%F IM2_1970_4_5_a2
A. V. Yakovlev. Homological determinacy of $p$-adic representations of rings with. Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 1001-1016. http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a2/

[1] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[2] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 2, IL, M., 1963

[3] Berman S. D., Gudivok P. M., “O tselochislennykh predstavleniyakh konechnykh grupp”, Dokl. AN SSSR, 145 (1962), 1199–1201 | MR | Zbl

[4] Heller A., Reiner I., “Representation of cyclic groups in rings of integers. I”, Ann. Math., 76 (1962), 73–92 | DOI | MR | Zbl

[5] Roiter A. V., “O predstavleniyakh tsiklicheskoi gruppy chetvertogo poryadka tselochislennymi matritsami”, Vestn. Leningr. un-ta, 19 (1960), 65–74 | MR | Zbl

[6] Borevich Z. I., “Multiplikativnaya gruppa regulyarnogo lokalnogo polya s tsiklicheskoi gruppoi operatorov”, Izv. AN SSSR. Ser. matem., 28 (1964), 707–712 | Zbl