Homological determinacy of $p$-adic representations of rings with
Izvestiya. Mathematics, Tome 4 (1970) no. 5, pp. 1001-1016
Cet article a éte moissonné depuis la source Math-Net.Ru
For rings with power basis it is proved that if two modules which are free and finitely generated over the ring of $p$-adic integers have cohomology of identical behavior, then they are “almost isomorphic”.
@article{IM2_1970_4_5_a2,
author = {A. V. Yakovlev},
title = {Homological determinacy of $p$-adic representations of rings with},
journal = {Izvestiya. Mathematics},
pages = {1001--1016},
year = {1970},
volume = {4},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a2/}
}
A. V. Yakovlev. Homological determinacy of $p$-adic representations of rings with. Izvestiya. Mathematics, Tome 4 (1970) no. 5, pp. 1001-1016. http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a2/
[1] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960
[2] Zarisskii O., Samyuel P., Kommutativnaya algebra, t. 2, IL, M., 1963
[3] Berman S. D., Gudivok P. M., “O tselochislennykh predstavleniyakh konechnykh grupp”, Dokl. AN SSSR, 145 (1962), 1199–1201 | MR | Zbl
[4] Heller A., Reiner I., “Representation of cyclic groups in rings of integers. I”, Ann. Math., 76 (1962), 73–92 | DOI | MR | Zbl
[5] Roiter A. V., “O predstavleniyakh tsiklicheskoi gruppy chetvertogo poryadka tselochislennymi matritsami”, Vestn. Leningr. un-ta, 19 (1960), 65–74 | MR | Zbl
[6] Borevich Z. I., “Multiplikativnaya gruppa regulyarnogo lokalnogo polya s tsiklicheskoi gruppoi operatorov”, Izv. AN SSSR. Ser. matem., 28 (1964), 707–712 | Zbl