Two-dimensional limit theorem for the particle number and energy in
Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 1183-1202.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that in the grand canonical ensemble for the case of a lattice system the fluctuations in energy and particle number have an asymptotic (for large volume) normal distribution. A similar statement is valid for fluctuations in energy and particle number for a sufficiently large region of the lattice even in the case of a limiting Gibbs distribution. Both theorems are proved provided the activity $z$ is small enough or the temperature $T$ is sufficiently high.
@article{IM2_1970_4_5_a10,
     author = {R. A. Minlos and A. M. Khalfina},
     title = {Two-dimensional limit theorem for the particle number and energy in},
     journal = {Izvestiya. Mathematics },
     pages = {1183--1202},
     publisher = {mathdoc},
     volume = {4},
     number = {5},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a10/}
}
TY  - JOUR
AU  - R. A. Minlos
AU  - A. M. Khalfina
TI  - Two-dimensional limit theorem for the particle number and energy in
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 1183
EP  - 1202
VL  - 4
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a10/
LA  - en
ID  - IM2_1970_4_5_a10
ER  - 
%0 Journal Article
%A R. A. Minlos
%A A. M. Khalfina
%T Two-dimensional limit theorem for the particle number and energy in
%J Izvestiya. Mathematics 
%D 1970
%P 1183-1202
%V 4
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a10/
%G en
%F IM2_1970_4_5_a10
R. A. Minlos; A. M. Khalfina. Two-dimensional limit theorem for the particle number and energy in. Izvestiya. Mathematics , Tome 4 (1970) no. 5, pp. 1183-1202. http://geodesic.mathdoc.fr/item/IM2_1970_4_5_a10/

[1] Bogolyubov N. N., Khatset B. I., “O nekotorykh matematicheskikh voprosakh teorii statisticheskogo ravnovesiya”, Dokl. AN SSSR, 66:3 (1949), 321–324 | MR | Zbl

[2] Ruelle D., “Correlation functions of classical gases”, Ann. Phys., 25 (1963), 109–120 | DOI | MR

[3] Dobrushin P. L., “Gibbsovskie sluchainye polya dlya reshetchatykh sistem s poparnym vzaimodeistviem”, Funkts. analiz i ego primeneniya, 2:4 (1968), 31–43 | MR

[4] Minlos R. A., “Predelnoe raspredelenie Gibbsa”, Funkts. analiz i ego primeneniya, 1:2 (1967), 60–73 | MR | Zbl

[5] Xalfina A. M., “Ekvivalentnost malogo i bolshogo kanonicheskikh ansamblei”, Matem. sb., 80(122) (1969), 3–51

[6] Callavotti G., Miracle-Sole S., “Correlation functions of a lattice gas”, Comm. Math. Phys., 7 (1968), 274–288 | DOI | MR

[7] Minlos R. A., Sinai Ya. G., “Yavlenie razdeleniya faz pri nizkikh temperaturakh v reshetchatykh modelyakh gaza. I”, Matem. sb., 73(115) (1967), 375–448 | MR