A parametric family of simple Lie algebras
Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 751-764
Voir la notice de l'article provenant de la source Math-Net.Ru
Over an algebraically closed field $k$ of characteristic $p=3$, a ten-dimensional simple Lie $p$-algebra $L(\varepsilon)$ is constructed which depends only on the parameter $\varepsilon\in k$. It is proved that algebras$L(\varepsilon)$ and $L(\varepsilon')$ are nonisomorphic for distinct values of $\varepsilon$ and $\varepsilon'$, $\varepsilon\varepsilon'\ne1$.
@article{IM2_1970_4_4_a2,
author = {A. I. Kostrikin},
title = {A parametric family of simple {Lie} algebras},
journal = {Izvestiya. Mathematics },
pages = {751--764},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a2/}
}
A. I. Kostrikin. A parametric family of simple Lie algebras. Izvestiya. Mathematics , Tome 4 (1970) no. 4, pp. 751-764. http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a2/