On representations of classical semisimple Lie algebras of characteristic $p$
Izvestiya. Mathematics, Tome 4 (1970) no. 4, pp. 741-749
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper theorems are proved about the dimension and the structure of irreducible representations of semisimple Lie algebras with nondegenerate Killing form over a field of prime characteristic.
@article{IM2_1970_4_4_a1,
author = {A. N. Rudakov},
title = {On representations of classical semisimple {Lie} algebras of characteristic~$p$},
journal = {Izvestiya. Mathematics},
pages = {741--749},
year = {1970},
volume = {4},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a1/}
}
A. N. Rudakov. On representations of classical semisimple Lie algebras of characteristic $p$. Izvestiya. Mathematics, Tome 4 (1970) no. 4, pp. 741-749. http://geodesic.mathdoc.fr/item/IM2_1970_4_4_a1/
[1] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR
[2] Curtis C., “Representations of Lie algebras of classical type with applications to linear groups. I”, Math. and Mech., 9 (1960), 307–326 | MR | Zbl
[3] Seligman G. B., “On Lie algebras of prime characteristic”, Mem. Amer. Math. Soc., 19 (1956) | MR | Zbl
[4] Pudakov A. H., Shafarevich I. R., “Neprivodimye predstavleniya prostoi trekhmernoi algebry Li nad polem konechnoi kharakteristiki”, Matem. zametki, 2:5 (1967), 439–454
[5] Seligman G. B., “Algebraic Lie algebras”, Bull. Amer. Math. Soc., 74:6 (1968), 1051–1065 | DOI | MR | Zbl
[6] Chevalley C., Classification des groupes de Lie algebriques, v. 1,2, Seminaire Bourbaki, Paris, 1958