On quadrature formulas with smallest bound for the remainder on certain classes of functions.~II
Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 645-669

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, as in the author's article $({}^1)$ with the same title, we consider questions related to optimal quadrature formulas.
@article{IM2_1970_4_3_a9,
     author = {G. K. Lebed'},
     title = {On quadrature formulas with smallest bound for the remainder on certain classes of {functions.~II}},
     journal = {Izvestiya. Mathematics },
     pages = {645--669},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a9/}
}
TY  - JOUR
AU  - G. K. Lebed'
TI  - On quadrature formulas with smallest bound for the remainder on certain classes of functions.~II
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 645
EP  - 669
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a9/
LA  - en
ID  - IM2_1970_4_3_a9
ER  - 
%0 Journal Article
%A G. K. Lebed'
%T On quadrature formulas with smallest bound for the remainder on certain classes of functions.~II
%J Izvestiya. Mathematics 
%D 1970
%P 645-669
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a9/
%G en
%F IM2_1970_4_3_a9
G. K. Lebed'. On quadrature formulas with smallest bound for the remainder on certain classes of functions.~II. Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 645-669. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a9/