On systems of convergence for $l_p$
Izvestiya. Mathematics, Tome 4 (1970) no. 3, pp. 627-644
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work, necessary and sufficient conditions are found in order for a system of measurable functions $\{f_n(x)\}$ to be a system of convergence for $l_p$. The assertions set forth here are a strengthening of the work of the author $({}^1)$ in the case when $B=l_p$.
@article{IM2_1970_4_3_a8,
author = {E. M. Nikishin},
title = {On systems of convergence for~$l_p$},
journal = {Izvestiya. Mathematics},
pages = {627--644},
year = {1970},
volume = {4},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a8/}
}
E. M. Nikishin. On systems of convergence for $l_p$. Izvestiya. Mathematics, Tome 4 (1970) no. 3, pp. 627-644. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a8/
[1] Nikishin E. M., “O sistemakh skhodimosti”, Matem. sb., 81(123) (1970), 23–38 | Zbl
[2] Nikishin E. M., “Odna teorema o funktsionalnykh posledovatelnostyakh”, Sib. matem. zh., XI:3 (1970)
[3] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR
[4] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963 | MR
[5] Nikishin E. M., “Dve teoremy o funktsionalnykh ryadakh”, Vestn. MGU, 1969, no. 6, 11–17 | Zbl
[6] Nikishin E. M., “O sistemakh absolyutnoi skhodimosti”, Matem. sb., 74(116) (1967), 544–553 | Zbl
[7] Vorobev N. N., Matrichnye igry, Sb. perevodov, Fizmatgiz, M., 1961 | MR
[8] Zigmund A., Trigonometricheskie ryady, t. II, Mir, M., 1965 | MR