On approximation in the mean on curves in the complex plane by
Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 551-567.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work investigates conditions fot the possibility of approximating functions $f(z)$ in the $p$ th order mean on a curve $C$ with arbitrary accuracy by polynomials whose coefficients are algebraic integers from a complex quadratic field. The case when $f(z)$ is an analytic function of class $E_p$ in the region bounded by a closed curve $C$ i s examined, as is the case when $f(z)$ is integrable of degree $p$ on a curve $C$ which is not closed.
@article{IM2_1970_4_3_a5,
     author = {S. Ya. Al'per and I. Yu. Vinogradova},
     title = {On approximation in the mean on curves in the complex plane by},
     journal = {Izvestiya. Mathematics },
     pages = {551--567},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a5/}
}
TY  - JOUR
AU  - S. Ya. Al'per
AU  - I. Yu. Vinogradova
TI  - On approximation in the mean on curves in the complex plane by
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 551
EP  - 567
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a5/
LA  - en
ID  - IM2_1970_4_3_a5
ER  - 
%0 Journal Article
%A S. Ya. Al'per
%A I. Yu. Vinogradova
%T On approximation in the mean on curves in the complex plane by
%J Izvestiya. Mathematics 
%D 1970
%P 551-567
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a5/
%G en
%F IM2_1970_4_3_a5
S. Ya. Al'per; I. Yu. Vinogradova. On approximation in the mean on curves in the complex plane by. Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 551-567. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a5/

[1] Aparisio-Bernardo E., “O nekotorykh svoistvakh mnogochlenov s tselymi koeffitsientami i o priblizhenii funktsii v srednem mnogochlenami s tselymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 19 (1955), 303–318 | MR | Zbl

[2] Gelfond A. O., “O ravnomernykh priblizheniyakh mnogochlenami s tselymi ratsionalnymi koeffitsientami”, Uspekhi matem. nauk, X:1(63) (1955), 41–65 | MR

[3] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, GITTL, M., L., 1950

[4] Keldysh M. V., “Ob odnom klasse ekstremalnykh polinomov”, Dokl. AN SSSR, 4 (1936), 163–166

[5] Fekete M., “Approximations par polynomes avec conditions diophantiennes”, Compt. Rend. Acad. Sc., 239:21 (1954), 1337–1339 | MR | Zbl

[6] Fekete M., “Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten”, Math. Z., 1923, no. 17, 228–249 | DOI | MR | Zbl

[7] Alper S. Ya., “O priblizhenii funktsii mnogochlenami s tselymi koeffitsientami na zamknutykh mnozhestvakh”, Izv. AN SSSR. Ser. matem., 28 (1964), 1173–1186 | MR

[8] Fekete M., “Approximations par des polynomes avec conditions diophantiennes”, Compt. Rend. Acad. Sc., 239:21 (1954), 1455–1457 | MR | Zbl

[9] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IIL, M., 1961 | MR

[10] Smirnov V. I., Lebedev N. A., Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., L., 1964 | MR

[11] Fekete M., “Über Potenzreihen, deren Koeffizienten fast alle ganzzahlig sind”, Matn. Ann., 96 (1927), 410–417 | DOI | MR

[12] Mepgelyan S. N., “O predstavlenii funktsii ryadami polinomov na zamknutykh mnozhestvakh”, Dokl. AN SSSR, 78:3 (1951), 405–408