Stability criteria for the action of a semisimple group on a~factorial manifold
Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 527-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work it is proved that, for the regular action of a semisimple irreducible algebraic group $G$ on an affine space, the existence of a closed orbit of maximum dimension is equivalent to the existence of an invariant open set at any point of which the stationary subgroup is reductive. This result is established for the action of $G$ on manifolds of a special type (the so-called factorial manifolds). There are given several other conditions equivalent to the existence of a closed orbit of maximum dimension for the action of $G$ on an arbitrary affine manifold.
@article{IM2_1970_4_3_a3,
     author = {V. L. Popov},
     title = {Stability criteria for the action of a semisimple group on a~factorial manifold},
     journal = {Izvestiya. Mathematics },
     pages = {527--535},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a3/}
}
TY  - JOUR
AU  - V. L. Popov
TI  - Stability criteria for the action of a semisimple group on a~factorial manifold
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 527
EP  - 535
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a3/
LA  - en
ID  - IM2_1970_4_3_a3
ER  - 
%0 Journal Article
%A V. L. Popov
%T Stability criteria for the action of a semisimple group on a~factorial manifold
%J Izvestiya. Mathematics 
%D 1970
%P 527-535
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a3/
%G en
%F IM2_1970_4_3_a3
V. L. Popov. Stability criteria for the action of a semisimple group on a~factorial manifold. Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 527-535. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a3/

[1] Nagata M., “Invariants under semi-reductive action”, J. Math. Kyoto Univ., 5:2 (1966), 171–176 | MR | Zbl

[2] Rosenlicht M., “A note on orbit spaces”, Anais. Acad. brasil cienc., 35:4 (1963), 487–489 | MR | Zbl

[3] Borel A., Harish-Chandra, “Arithmetic subgroups of algebraic groups”, Ann. Math., 75:3 (1962), 485–535 ; Matematika, 8:2 (1964), 19–71 | DOI | MR | Zbl | MR

[4] Andreev E. M., Vinberg E. B., Elashvili A. G., “Orbity naibolshei razmernosti poluprostykh lineinykh grupp Li”, Funkts. analiz i ego prilozhenie, 1:4 (1967), 3–7 | MR | Zbl

[5] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72) (1952), 349–362 | MR

[6] Matsushima Y., “Espaces homogénes de Stein des groupes de Lie complexes”, Nagoya Math. J., 16 (1960), 205–218 | MR | Zbl

[7] Mumford D., Geometric invariant theory, Springer-Verlag, 1965 | MR | Zbl

[8] Kleiman S., “Toward a numerical theory of ampleness”, Ann. Math.(2), 84:2 (1966), 293–344 | DOI | MR | Zbl