Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1970_4_3_a3, author = {V. L. Popov}, title = {Stability criteria for the action of a semisimple group on a~factorial manifold}, journal = {Izvestiya. Mathematics }, pages = {527--535}, publisher = {mathdoc}, volume = {4}, number = {3}, year = {1970}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a3/} }
V. L. Popov. Stability criteria for the action of a semisimple group on a~factorial manifold. Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 527-535. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a3/
[1] Nagata M., “Invariants under semi-reductive action”, J. Math. Kyoto Univ., 5:2 (1966), 171–176 | MR | Zbl
[2] Rosenlicht M., “A note on orbit spaces”, Anais. Acad. brasil cienc., 35:4 (1963), 487–489 | MR | Zbl
[3] Borel A., Harish-Chandra, “Arithmetic subgroups of algebraic groups”, Ann. Math., 75:3 (1962), 485–535 ; Matematika, 8:2 (1964), 19–71 | DOI | MR | Zbl | MR
[4] Andreev E. M., Vinberg E. B., Elashvili A. G., “Orbity naibolshei razmernosti poluprostykh lineinykh grupp Li”, Funkts. analiz i ego prilozhenie, 1:4 (1967), 3–7 | MR | Zbl
[5] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Matem. sb., 30(72) (1952), 349–362 | MR
[6] Matsushima Y., “Espaces homogénes de Stein des groupes de Lie complexes”, Nagoya Math. J., 16 (1960), 205–218 | MR | Zbl
[7] Mumford D., Geometric invariant theory, Springer-Verlag, 1965 | MR | Zbl
[8] Kleiman S., “Toward a numerical theory of ampleness”, Ann. Math.(2), 84:2 (1966), 293–344 | DOI | MR | Zbl