On the motif of a cubic hypersurface
Izvestiya. Mathematics, Tome 4 (1970) no. 3, pp. 520-526
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a nonsingular cubic hypersurface $V$ in $\mathbf P^4$. We prove that the motif $\widetilde V$ can be expressed by means of the Tate motif and the motif $(Y,\frac12\operatorname{id}-\frac12c(\gamma))$, where $Y$ is the curve of straight lines on $V$ that pass through a fixed line $l_0\subset V$ and $\gamma$ is an automorphism of $Y$ that leaves no line coplanar with $l_0$ fixed.
@article{IM2_1970_4_3_a2,
author = {A. M. Shermenev},
title = {On the motif of a cubic hypersurface},
journal = {Izvestiya. Mathematics},
pages = {520--526},
year = {1970},
volume = {4},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a2/}
}
A. M. Shermenev. On the motif of a cubic hypersurface. Izvestiya. Mathematics, Tome 4 (1970) no. 3, pp. 520-526. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a2/
[1] Abhyankar S., “On the problem of resolution of singularities”, Tr. mezhdunarodnogo kongressa matematikov, Mir, M., 1966 | MR
[2] Bombieri E., Swinnerton-Dyer H. P. F., “On the local zeta-function of a culic threefold”, Ann. Scuola norm. super. Pisa (III), XXI:1 (1967), 1–30 | MR
[3] Gherardelli F., “Un osservazione sulla varieta'cubica di $\mathbf P^4$”, Rend. Sem. Mat. Fis. Milano, 37 (1967), 157–160 | DOI | MR | Zbl
[4] Khironaka Kh., “Razreshenie osobennostei algebraicheskikh mnogoobrazii nad polyami kharakteristiki nul”, Matematika, 9:6 (1965), 3–70; 10:1 (1966), 3–89 ; 10:2 (1966), 3–58 | MR | MR
[5] Manin Yu. I., “Sootvetstviya, motivy i monoidalnye preobrazovaniya”, Matem. sb., 77(119) (1968), 475–507 | MR | Zbl