On the motif of a cubic hypersurface
Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 520-526

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a nonsingular cubic hypersurface $V$ in $\mathbf P^4$. We prove that the motif $\widetilde V$ can be expressed by means of the Tate motif and the motif $(Y,\frac12\operatorname{id}-\frac12c(\gamma))$, where $Y$ is the curve of straight lines on $V$ that pass through a fixed line $l_0\subset V$ and $\gamma$ is an automorphism of $Y$ that leaves no line coplanar with $l_0$ fixed.
@article{IM2_1970_4_3_a2,
     author = {A. M. Shermenev},
     title = {On the motif of a cubic hypersurface},
     journal = {Izvestiya. Mathematics },
     pages = {520--526},
     publisher = {mathdoc},
     volume = {4},
     number = {3},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a2/}
}
TY  - JOUR
AU  - A. M. Shermenev
TI  - On the motif of a cubic hypersurface
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 520
EP  - 526
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a2/
LA  - en
ID  - IM2_1970_4_3_a2
ER  - 
%0 Journal Article
%A A. M. Shermenev
%T On the motif of a cubic hypersurface
%J Izvestiya. Mathematics 
%D 1970
%P 520-526
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a2/
%G en
%F IM2_1970_4_3_a2
A. M. Shermenev. On the motif of a cubic hypersurface. Izvestiya. Mathematics , Tome 4 (1970) no. 3, pp. 520-526. http://geodesic.mathdoc.fr/item/IM2_1970_4_3_a2/