On the problem of a finite basis of identities in groups
Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 381-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper contains a proof that the set of varieties of groups has the cardinality of the continuum. This implies the existence of an infinite system of group identities not equivalent to any finite system.
@article{IM2_1970_4_2_a6,
     author = {A. Yu. Ol'shanskii},
     title = {On the problem of a finite basis of identities in groups},
     journal = {Izvestiya. Mathematics },
     pages = {381--389},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a6/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - On the problem of a finite basis of identities in groups
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 381
EP  - 389
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a6/
LA  - en
ID  - IM2_1970_4_2_a6
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T On the problem of a finite basis of identities in groups
%J Izvestiya. Mathematics 
%D 1970
%P 381-389
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a6/
%G en
%F IM2_1970_4_2_a6
A. Yu. Ol'shanskii. On the problem of a finite basis of identities in groups. Izvestiya. Mathematics , Tome 4 (1970) no. 2, pp. 381-389. http://geodesic.mathdoc.fr/item/IM2_1970_4_2_a6/

[1] Neumann B. H., “Identical relations in groups. I”, Math. Ann., 114 (1937), 506–525 | DOI | MR | Zbl

[2] Neimaya Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[3] Lyndon R. C., “Two notes on nilpotent groups”, Proc. Amer. Math. Soc., 3 (1952), 579–583 | DOI | MR | Zbl

[4] Oates Sheila, Powell M. B., “Identical relations in finite groups”, J. Algebra, 1 (1964), 11–39 | DOI | MR | Zbl

[5] Cohen D. E., “On the laws of metabelian variety”, J. Algebra, 5 (1967), 267–273 | DOI | MR | Zbl