On imbedding theorems for a natural extension of the sobolev class $W^l_p(\Omega)$
Izvestiya. Mathematics, Tome 4 (1970) no. 1, pp. 147-157
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the class $W^l_{p,\varphi}(\Omega,g)$ of functions is considered which have generalized derivatives of order $l$ in the region $\Omega$ and finite norm \begin{gather*} |f;W^l_{p,\varphi}(\Omega,g)|=|f;L_p(g)|+|f;L^l_{p,\varphi}(\Omega)| \\ (|f;L^l_{p,\varphi}(\Omega)|=\sum_{|r|=l}|\varphi D^rf;L_p(\Omega)|), \end{gather*} where $g$ is a bounded interior subregion of the region $\Omega$, and $\varphi$ a weight that degenerates on the boundary $\partial\Omega$ or at infinity. Continuous and completely continuous imbeddings $W^l_{p,\varphi}(\Omega,g)\to L^k_{p,\varphi_r}(\Omega)$ $(0\leqslant k$ are obtained.
@article{IM2_1970_4_1_a7,
author = {J. V. Rybalov},
title = {On imbedding theorems for a natural extension of the sobolev class $W^l_p(\Omega)$},
journal = {Izvestiya. Mathematics},
pages = {147--157},
year = {1970},
volume = {4},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a7/}
}
J. V. Rybalov. On imbedding theorems for a natural extension of the sobolev class $W^l_p(\Omega)$. Izvestiya. Mathematics, Tome 4 (1970) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a7/
[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, L., 1950
[2] Kudryavtsev L. D., “Teoremy vlozheniya dlya funktsii, opredelennykh v neogranichennykh oblastyakh”, Dokl. AN SSSR, 153:3 (1963), 34–36
[3] Rybalov Yu. V., “Teoremy vlozheniya dlya funktsii, opredelennykh v neogranichennykh oblastyakh, i ikh primenenie k spektralnoi teorii ellipticheskikh samosopryazhennykh operatorov”, Dokl. AN SSSR, 184:5 (1969), 1041–1043 | MR | Zbl
[4] Nikolskii S. M., “Nekotorye svoistva differentsiruemykh funktsii”, Izv. AN SSSR. Ser. matem., 23 (1959), 213–242 | MR