On imbedding theorems for a natural extension of the sobolev class $W^l_p(\Omega)$
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 147-157
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the class $W^l_{p,\varphi}(\Omega,g)$ of functions is considered which have generalized derivatives of order $l$ in the region $\Omega$ and finite norm
\begin{gather*}
|f;W^l_{p,\varphi}(\Omega,g)|=|f;L_p(g)|+|f;L^l_{p,\varphi}(\Omega)|
\\
(|f;L^l_{p,\varphi}(\Omega)|=\sum_{|r|=l}|\varphi D^rf;L_p(\Omega)|),
\end{gather*}
where $g$ is a bounded interior subregion of the region $\Omega$, and $\varphi$ a weight that degenerates on the boundary $\partial\Omega$ or at infinity. Continuous and completely continuous imbeddings $W^l_{p,\varphi}(\Omega,g)\to L^k_{p,\varphi_r}(\Omega)$ $(0\leqslant k$ are obtained.
@article{IM2_1970_4_1_a7,
author = {J. V. Rybalov},
title = {On imbedding theorems for a natural extension of the sobolev class $W^l_p(\Omega)$},
journal = {Izvestiya. Mathematics },
pages = {147--157},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1970},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a7/}
}
J. V. Rybalov. On imbedding theorems for a natural extension of the sobolev class $W^l_p(\Omega)$. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 147-157. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a7/