Invariant subrings of induced rings
Izvestiya. Mathematics, Tome 4 (1970) no. 1, pp. 85-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the invariant subrings of a certain class of induced rings. The result we obtain gives, in particular, an answer to a problem posed in $({}^1)$ concerning the structure of the invariant subrings of a ring that arises in the reduction, modulo a prime, of modular functions.
@article{IM2_1970_4_1_a4,
     author = {B. Kh. Kirshtein and I. I. Pyatetskii-Shapiro},
     title = {Invariant subrings of induced rings},
     journal = {Izvestiya. Mathematics},
     pages = {85--90},
     year = {1970},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a4/}
}
TY  - JOUR
AU  - B. Kh. Kirshtein
AU  - I. I. Pyatetskii-Shapiro
TI  - Invariant subrings of induced rings
JO  - Izvestiya. Mathematics
PY  - 1970
SP  - 85
EP  - 90
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a4/
LA  - en
ID  - IM2_1970_4_1_a4
ER  - 
%0 Journal Article
%A B. Kh. Kirshtein
%A I. I. Pyatetskii-Shapiro
%T Invariant subrings of induced rings
%J Izvestiya. Mathematics
%D 1970
%P 85-90
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a4/
%G en
%F IM2_1970_4_1_a4
B. Kh. Kirshtein; I. I. Pyatetskii-Shapiro. Invariant subrings of induced rings. Izvestiya. Mathematics, Tome 4 (1970) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a4/

[1] Pyatetskii-Shapiro I. I., “O reduktsii po prostomu modulyu polei modulyarnykh funktsii”, Izv. AN SSSR. Ser. matem., 32 (1968), 1264–1274