Description of the completely irreducible representations of a complex semisimple Lie group
Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 59-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a complete description (up to a certain equivalence) of all the completely irreducible representations of a connected complex semisimple Lie group in separated complete (at least sequentially) locally convex spaces.
@article{IM2_1970_4_1_a3,
     author = {D. P. Zhelobenko and M. A. Naimark},
     title = {Description of the completely irreducible representations of a complex semisimple {Lie} group},
     journal = {Izvestiya. Mathematics },
     pages = {59--83},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1970},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a3/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
AU  - M. A. Naimark
TI  - Description of the completely irreducible representations of a complex semisimple Lie group
JO  - Izvestiya. Mathematics 
PY  - 1970
SP  - 59
EP  - 83
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a3/
LA  - en
ID  - IM2_1970_4_1_a3
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%A M. A. Naimark
%T Description of the completely irreducible representations of a complex semisimple Lie group
%J Izvestiya. Mathematics 
%D 1970
%P 59-83
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a3/
%G en
%F IM2_1970_4_1_a3
D. P. Zhelobenko; M. A. Naimark. Description of the completely irreducible representations of a complex semisimple Lie group. Izvestiya. Mathematics , Tome 4 (1970) no. 1, pp. 59-83. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a3/

[1] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Tr. Mosk. matem. ob-va, 6 (1957), 371–463 | MR | Zbl

[2] Bruhat F., “Sur les representations induces des groupes de Lie”, Bull. Soc. Math. France, 84 (1956), 97–205 | MR | Zbl

[3] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[4] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967 | MR

[5] Gelfand I. M., Naimark M. A., Unitarnye predstavleniya klassicheskikh grupp, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 36, 1950 | MR | Zbl

[6] Gelfand I. M., Graev M. I., Vilenkin N. Ya., “Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii”, Obobschennye funktsii, vyp. 5, Fizmatgiz, M., 1962

[7] Godement R., “Theory of spherical functions. I”, Trans. Amer. Math. Soc., 73:3 (1962), 496–556 ; Matematika, 5:5 (1961), 55–87 | DOI | MR

[8] Zhelobenko D. P., “Simmetriya v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Funktsionalnyi analiz i ego prilozheniya, 1:2 (1967), 15–38 | MR

[9] Zhelobenko D. P., “Analiz neprivodimosti v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Izv. AN SSSR. Ser. matem., 32 (1968), 108–133

[10] Zhelobenko D. P., “Operatsionnoe ischislenie na poluprostoi kompleksnoi gruppe Li”, Izv. AN SSSR. Ser. matem., 33 (1969), 931–973

[11] Zhelobenko D. P., “O garmonicheskom analize funktsii na poluprostoi kompleksnoi gruppe Li. II”, Izv. AN SSSR. Ser. matem., 33 (1969), 1255–1295 | Zbl

[12] Zhelobenko D. P., Naimark M. A., “Opisanie vpolne neprivodimykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 171:1 (1966), 25–28 | Zbl

[13] Zhelobenko D. P., “Analog teorii Kartana–Veilya dlya beskonechnomernykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 175:1 (1967), 24–27

[14] Naimark M. A., “O lineinykh predstavleniyakh sobstvennoi gruppy Lorentsa”, Dokl. AN SSSR, 97:6 (1954), 969–972 | MR | Zbl

[15] Naimark M. A., Lineinye predstavleniya gruppy Lorentsa, Fizmatgiz, M., 1958 | MR

[16] Naimark M. A., “Ob opisanii vsekh unitarnykh predstavlenii kompleksnoi klassicheskoi gruppy Li. I”, Matem. sb., 35(77) (1954), 317–356 ; “II”, 37(79) (1955), 121–140 | MR | MR | Zbl

[17] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR | Zbl

[18] Parthasarathy K. R., Ranga Rao, Varadarajan V. S., “Representations of complex semi-simple Lie groups and Lie algebras”, Ann. Math., 85:3 (1967), 383–429 | DOI | MR | Zbl

[19] Harish-Chandra, “On some applications of the universal enveloping algebra of a semi-simple Lie algebra”, Trans. Amer. Math. Soc., 70 (1951), 28–96 | DOI | MR | Zbl

[20] Harish-Chandra, “Representations of semi-simple Lie group on a Banach space. I”, Trans. Amer. Math. Soc., 75 (1953), 185–243 | DOI | MR | Zbl

[21] Harish-Chandra, “Representations of semi-simple Lie groups. II”, Trans. Amer. Math. Soc., 76 (1954), 26–65 | DOI | MR | Zbl

[22] Harish-Chandra, “The Plancherel formula for complex semi-simple Lie groups”, Trans. Amer. Math. Soc., 76 (1954), 485–528 | DOI | MR | Zbl