Estimates of character sums
Izvestiya. Mathematics, Tome 4 (1970) no. 1, pp. 19-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A new estimate is obtained for character sums in a finite field of degree $n\geqslant2$.
@article{IM2_1970_4_1_a1,
     author = {A. A. Karatsuba},
     title = {Estimates of character sums},
     journal = {Izvestiya. Mathematics},
     pages = {19--29},
     year = {1970},
     volume = {4},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a1/}
}
TY  - JOUR
AU  - A. A. Karatsuba
TI  - Estimates of character sums
JO  - Izvestiya. Mathematics
PY  - 1970
SP  - 19
EP  - 29
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a1/
LA  - en
ID  - IM2_1970_4_1_a1
ER  - 
%0 Journal Article
%A A. A. Karatsuba
%T Estimates of character sums
%J Izvestiya. Mathematics
%D 1970
%P 19-29
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a1/
%G en
%F IM2_1970_4_1_a1
A. A. Karatsuba. Estimates of character sums. Izvestiya. Mathematics, Tome 4 (1970) no. 1, pp. 19-29. http://geodesic.mathdoc.fr/item/IM2_1970_4_1_a1/

[1] Karatsuba A. A., “Summy kharakterov i pervoobraznye korni v konechnykh polyakh”, Dokl. AN SSSR, 180:6 (1968), 1287–1289 | Zbl

[2] Davenport H., Erdös P., “The distribution of quadratic and higher residues”, Publ. Math. Debrecen, 2 (1952), 152–265 | MR

[3] Burgess D. A., “On character sums and primitive roots”, Proc. London Math. Soc.(3), 12 (1962), 179–192 | DOI | MR | Zbl