On the existence and constancy of sign of Green's function of scalar equations of high order with almost periodic coefficients
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1319-1334.

Voir la notice de l'article provenant de la source Math-Net.Ru

The conditions of positivity and negativity of the Green's function of a linear scalar differential operator of the second and higher orders with almost periodic coefficients are investigated.
@article{IM2_1969_3_6_a9,
     author = {V. Sh. Burd and Yu. S. Kolesov and M. A. Krasnosel'skii},
     title = {On the existence and constancy of sign of {Green's} function of scalar equations of high order with almost periodic coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {1319--1334},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a9/}
}
TY  - JOUR
AU  - V. Sh. Burd
AU  - Yu. S. Kolesov
AU  - M. A. Krasnosel'skii
TI  - On the existence and constancy of sign of Green's function of scalar equations of high order with almost periodic coefficients
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1319
EP  - 1334
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a9/
LA  - en
ID  - IM2_1969_3_6_a9
ER  - 
%0 Journal Article
%A V. Sh. Burd
%A Yu. S. Kolesov
%A M. A. Krasnosel'skii
%T On the existence and constancy of sign of Green's function of scalar equations of high order with almost periodic coefficients
%J Izvestiya. Mathematics 
%D 1969
%P 1319-1334
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a9/
%G en
%F IM2_1969_3_6_a9
V. Sh. Burd; Yu. S. Kolesov; M. A. Krasnosel'skii. On the existence and constancy of sign of Green's function of scalar equations of high order with almost periodic coefficients. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1319-1334. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a9/

[1] Burd V. Sh., Kolesov Yu. S., Krasnoselskii M. A., “Issledovanie funktsii Grina differentsialnykh operatorov s pochti periodicheskimi koeffitsientami”, Izv. AN SSSR. Ser. matem., 33 (1960), 1089–1119 | MR

[2] Levin A. Yu., “O neostsillyatsii reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+p_n(t)x=0$”, Uspekhi matem. nauk, XXIV:2(146) (1969), 43–96

[3] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Fizmatgiz, M., 1963 | MR

[4] Sobol I. M., “Granichnoe reshenie uravneniya Rikkati i ego primenenie k issledovaniyu reshenii lineinogo differentsialnogo uravneniya vtorogo poryadka”, Matematika, t. 5, Uch. zap. MGU, 155, 1952, 195–205 | MR

[5] Halanay A., “Solutions presquepériodiques de s'equations de Riccati”, Acad. Repub. Pop. Romane. Stud. Cere. Mat., 4 (1953), 345–354 | MR | Zbl

[6] Markus L., Moore R. A., “Oscillation and disconiugacy for linear differential equations with almost periodic coefficients”, Acta Mathematica, 96 (1956), 99–123 | DOI | MR | Zbl