On monotone solutions of nonlinear ordinary differential equations of order $n$.
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1293-1317

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish in this paper existence and uniqueness criteria and study the behavior for $t\to +\infty$ of the solution $u(t)$ of the differential equation $u^{(n)}=f(t,u,u',\dots,u^{(n-1)})$, defined in the interval $(0,+\infty)$ and satisfying the conditions $\lim\limits_{t\to +0}u(t)=u_0$ $(-1)^{k}u^{(k)}(t)\geqslant 0$, for $t>0$ $(k=0,1,\dots,n-1)$.
@article{IM2_1969_3_6_a8,
     author = {I. T. Kiguradze},
     title = {On monotone solutions of nonlinear ordinary differential equations of order $n$.},
     journal = {Izvestiya. Mathematics },
     pages = {1293--1317},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a8/}
}
TY  - JOUR
AU  - I. T. Kiguradze
TI  - On monotone solutions of nonlinear ordinary differential equations of order $n$.
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1293
EP  - 1317
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a8/
LA  - en
ID  - IM2_1969_3_6_a8
ER  - 
%0 Journal Article
%A I. T. Kiguradze
%T On monotone solutions of nonlinear ordinary differential equations of order $n$.
%J Izvestiya. Mathematics 
%D 1969
%P 1293-1317
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a8/
%G en
%F IM2_1969_3_6_a8
I. T. Kiguradze. On monotone solutions of nonlinear ordinary differential equations of order $n$.. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1293-1317. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a8/