Study of stability of solutions of second order parabolic equations in the critical case
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1277-1291.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stability of the zero solution of a quasilinear periodic parabolic equation is examined. It is proved that the stability of the zero solution in the critical case is entirely determined by the topological index of the zero solution.
@article{IM2_1969_3_6_a7,
     author = {Yu. S. Kolesov},
     title = {Study of stability of solutions of second order parabolic equations in the critical case},
     journal = {Izvestiya. Mathematics },
     pages = {1277--1291},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a7/}
}
TY  - JOUR
AU  - Yu. S. Kolesov
TI  - Study of stability of solutions of second order parabolic equations in the critical case
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1277
EP  - 1291
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a7/
LA  - en
ID  - IM2_1969_3_6_a7
ER  - 
%0 Journal Article
%A Yu. S. Kolesov
%T Study of stability of solutions of second order parabolic equations in the critical case
%J Izvestiya. Mathematics 
%D 1969
%P 1277-1291
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a7/
%G en
%F IM2_1969_3_6_a7
Yu. S. Kolesov. Study of stability of solutions of second order parabolic equations in the critical case. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1277-1291. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a7/

[1] Gorkov Yu. P., “O povedenii reshenii kraevykh zadach dlya kvazilineinogo parabolicheskogo uravneniya pri $t\to\infty$”, Dokl. AN SSSR, 157:3 (1964), 509–512 | MR

[2] Zabreiko P. P., Krasnoselskii M. A., “Vychislenie indeksa nepodvizhnoi tochki vektornogo polya”, Sib. matem. zh., 5:3 (1964), 509–531 | MR | Zbl

[3] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz v normirovannykh prostranstvakh, Fizmatgiz, M., 1959 | MR

[4] Kolesov Yu. S., “Periodicheskie resheniya kvazilineinykh parabolicheskikh uravnenii vtorogo poryadka”, Tr. Mosk. matem. ob-va, 21 (1969), 131–152

[5] Kolesov Yu. S., “O periodicheskikh resheniyakh odnogo klassa differentsialnykh uravnenii s gisterezisnoi nelineinostyu”, Dokl. AN SSSR, 176:6 (1967), 1240–1243 | MR | Zbl

[6] Krasnoselskii M. A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR

[7] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR

[8] Krasnoselskii M. A., Lifshits E. A., “Printsipy dvoistvennosti dlya granichnykh zadach”, Dokl. AN SSSR, 176:5 (1967), 1021–1024

[9] Miranda K., Uravneniya s chastnymi proizvodnymi ellipticheskogo tipa, IL, M., 1957

[10] Mukhamediev E., Pokornyi Yu. V., “O monotonnykh operatorakh s neskolkimi nepodvizhnymi tochkami”, Dokl. AN TadzhSSR, 10:4 (1967), 3–6 | MR

[11] Polia G., Sege G., Zadachi i teoremy iz analiza, t. 1, Gostekhizdat, M., 1956

[12] Sobolevskii P. E., “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. Mosk. matem. ob-va, 10 (1961), 297–350 | MR | Zbl

[13] Shimanov S. N., “Ob ustoichivosti v kriticheskom sluchae odnogo nulevogo kornya dlya sistem s posledeistviem”, Prikl. matem. i mekh., 24:3 (1960), 447–457 | Zbl

[14] Shimanov S. N., “Ob ustoichivosti v kriticheskom sluchae odnogo nulevogo kornya dlya sistem s posledeistviem (osobyi sluchai)”, Izv. vyssh. uch. zav. Matematika, 1961, no. 1, 152–162 | Zbl