Complete extensions of Volterra operators
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1271-1276.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that any Volterra operator has a complete compact extension.
@article{IM2_1969_3_6_a6,
     author = {N. K. Nikol'skii},
     title = {Complete extensions of {Volterra} operators},
     journal = {Izvestiya. Mathematics },
     pages = {1271--1276},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a6/}
}
TY  - JOUR
AU  - N. K. Nikol'skii
TI  - Complete extensions of Volterra operators
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1271
EP  - 1276
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a6/
LA  - en
ID  - IM2_1969_3_6_a6
ER  - 
%0 Journal Article
%A N. K. Nikol'skii
%T Complete extensions of Volterra operators
%J Izvestiya. Mathematics 
%D 1969
%P 1271-1276
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a6/
%G en
%F IM2_1969_3_6_a6
N. K. Nikol'skii. Complete extensions of Volterra operators. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1271-1276. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a6/

[1] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[2] Brown L., Shields A., Zeller K., “On absolutely convergent exponential sums”, Trans. Amer. Math. Soc., 96:1 (1960), 162–183 | DOI | MR | Zbl

[3] Hamburger H. L., “Über die Zerlegung des Hilbertsehen Raumes durch vollstetige lineare Transformationen”, Math. Nachrichten, 4 (1950–1951), 56–69 | MR

[4] Rubel L. A., Shields A. L., “The space of bounded analytic functions on a region”, Ann. Inst. Fourier, 16:1 (1966), 238–277 | MR

[5] Wermer J., “On invariant subspaces of normal operators”, Proc. Amer. Math. Soc., 3:2 (1952), 270–277 | DOI | MR | Zbl