Finite approximabiliyt of free products with respect to occurrence
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1245-1249.

Voir la notice de l'article provenant de la source Math-Net.Ru

We shall say that a group $G$ belongs to a class $\Phi\mathrm{AB}_\omega$ if and only if for any finitely generated subgroup $H$ of $G$ and any element $g$ of $G$ that does not lie in $H$ there exists a homomorphism of $G$ into a finite group such that the image of $g$ does not belong to the image of the subgroup $H$. We prove that the class $\Phi\mathrm{AB}_\omega$ is closed under the operation of free multiplication.
@article{IM2_1969_3_6_a4,
     author = {N. S. Romanovskii},
     title = {Finite approximabiliyt of free products with respect to occurrence},
     journal = {Izvestiya. Mathematics },
     pages = {1245--1249},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a4/}
}
TY  - JOUR
AU  - N. S. Romanovskii
TI  - Finite approximabiliyt of free products with respect to occurrence
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1245
EP  - 1249
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a4/
LA  - en
ID  - IM2_1969_3_6_a4
ER  - 
%0 Journal Article
%A N. S. Romanovskii
%T Finite approximabiliyt of free products with respect to occurrence
%J Izvestiya. Mathematics 
%D 1969
%P 1245-1249
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a4/
%G en
%F IM2_1969_3_6_a4
N. S. Romanovskii. Finite approximabiliyt of free products with respect to occurrence. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1245-1249. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a4/

[1] Kargapolov M. I., Merzlyakov Yu. I., Beskonechnye gruppy, Itogi nauki. Algebra. Topologiya. Geometriya. 1966, Moskva, 1968 | MR | Zbl

[2] Maltsev A. I., “O gomomorfizmakh na konechnye gruppy”, Uch. zap. Ivanovsk. ped. in-ta, 18 (1958), 49–60

[3] Hall M., “Coset representations in free groups”, Trans. Amer. Math. Soc., 67 (1949), 421–432 | DOI | MR | Zbl

[4] Magnus W., Karras A., Solitar D., Combinatorial group theory, New York, London, Sydney, 1966 | MR

[5] Mikhailova K. A., “Problema vkhozhdeniya dlya svobodnogo proizvedeniya grupp”, Matem. sb., 75:2 (1968), 199–211 | MR

[6] Gruenberg K. W., “Residual properties of infinite soluble groups”, Proc. Lond. Math. Soc., VII:25 (1957), 29–62 | DOI | MR

[7] Romanovskii N. S., “O finitnoi approksimiruemosti svobodnykh proizvedenii otnositelno vkhozhdeniya”, Algebra i logika, 7:5 (1968), 3 | MR