Best quadrature formulas for classes of differentiable functions and piecewise-polynomial approximation
Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1335-1355

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we obtain characteristic properties of piecewise-polynomial functions (“spline” functions) that have least deviation from zero in the metric of $C$. This has allowed us to obtain quadrature formulas with least estimate of the remainder on a number of classes of differentiable functions.
@article{IM2_1969_3_6_a10,
     author = {N. P. Korneichuk and N. E. Lushpai},
     title = {Best quadrature formulas for classes of differentiable functions and piecewise-polynomial approximation},
     journal = {Izvestiya. Mathematics },
     pages = {1335--1355},
     publisher = {mathdoc},
     volume = {3},
     number = {6},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a10/}
}
TY  - JOUR
AU  - N. P. Korneichuk
AU  - N. E. Lushpai
TI  - Best quadrature formulas for classes of differentiable functions and piecewise-polynomial approximation
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1335
EP  - 1355
VL  - 3
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a10/
LA  - en
ID  - IM2_1969_3_6_a10
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%A N. E. Lushpai
%T Best quadrature formulas for classes of differentiable functions and piecewise-polynomial approximation
%J Izvestiya. Mathematics 
%D 1969
%P 1335-1355
%V 3
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a10/
%G en
%F IM2_1969_3_6_a10
N. P. Korneichuk; N. E. Lushpai. Best quadrature formulas for classes of differentiable functions and piecewise-polynomial approximation. Izvestiya. Mathematics , Tome 3 (1969) no. 6, pp. 1335-1355. http://geodesic.mathdoc.fr/item/IM2_1969_3_6_a10/