On regularity of first-degree prime divisors of an imaginary quadratic field
Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1001-1018.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper treats the question of regularity of first-degree prime divisors of an imaginary quadratic field. The principal result is a sufficient criterion on regularity for the imaginary quadratic fields $Q(\sqrt{-1})$ and $Q(\sqrt{-3})$, analogous to Kummer's criterion.
@article{IM2_1969_3_5_a3,
     author = {A. P. Novikov},
     title = {On regularity of first-degree prime divisors of an imaginary quadratic field},
     journal = {Izvestiya. Mathematics },
     pages = {1001--1018},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a3/}
}
TY  - JOUR
AU  - A. P. Novikov
TI  - On regularity of first-degree prime divisors of an imaginary quadratic field
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1001
EP  - 1018
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a3/
LA  - en
ID  - IM2_1969_3_5_a3
ER  - 
%0 Journal Article
%A A. P. Novikov
%T On regularity of first-degree prime divisors of an imaginary quadratic field
%J Izvestiya. Mathematics 
%D 1969
%P 1001-1018
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a3/
%G en
%F IM2_1969_3_5_a3
A. P. Novikov. On regularity of first-degree prime divisors of an imaginary quadratic field. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1001-1018. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a3/

[1] Fueter R., “Die verallgemeinerte Kronekersche Grenzformel und ihre Anwendung auf die Berechnung der Klassenzahle”, Rend. Palermo, 29 (1910), 380–395 | DOI

[2] Ramachandra K., “Some applications of Kroneckers limit formulas”, Ann. Math., 80:1 (1964), 104–148 | DOI | MR | Zbl

[3] Hasse H., “Neue Begründung der komplexen Multiplikation”, J. reine und angew. Math., 165 (1931), 64–88 | Zbl

[4] Deuring M., “Reduktion algebraischer Funktionenkörper nach Primdivisoren des Konstantenkörpers”, Math. Z., 47 (1942), 643–654 | DOI | MR | Zbl

[5] Deuring M., “Die Struktur der elliptischen Funktionenkörper und die Klassenkörper der imaginären quadratischen Zahlkörper”, Math. Ann., 124:5 (1952), 393–426 | MR | Zbl

[6] Weber H., Lehrbuch der Algebra, b. 3, Braunschweig, 1908

[7] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1964 | MR

[8] Novikov A., “O chisle klassov polei, abelevykh nad kvadratichno-mnimym polem”, Izv. AN SSSR. Ser. matem., 31 (1967), 717–726 | MR | Zbl

[9] Novikov A., “O chisle klassov polei kompleksnogo umnozheniya”, Izv. AN SSSR. Ser. matem., 26 (1962), 677–686 | MR