Locally semiuniversal flat deformations of isolated singularities of complex spaces
Izvestiya. Mathematics, Tome 3 (1969) no. 5, pp. 967-999
Cet article a éte moissonné depuis la source Math-Net.Ru
In this study we construct the minimal locally semiuniversal deformation of a normal isolated singularity $x_0\in X_0$ for which $\operatorname{Ext}^2_{0(x_0)}(\Omega(X_0), 0(X_0))_{x_0}=0$, where $\Omega(X_0)$ is the sheaf of germs of one-dimensional holomorphic forms in the complex space $(X_0,0(X_0))$.
@article{IM2_1969_3_5_a2,
author = {G. N. Tyurina},
title = {Locally semiuniversal flat deformations of isolated singularities of complex spaces},
journal = {Izvestiya. Mathematics},
pages = {967--999},
year = {1969},
volume = {3},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a2/}
}
G. N. Tyurina. Locally semiuniversal flat deformations of isolated singularities of complex spaces. Izvestiya. Mathematics, Tome 3 (1969) no. 5, pp. 967-999. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a2/
[1] Grauert H., Kerner H., “Deformationen von Singularitäten komplexer Räume”, Math. Ann., 153 (1964), 236–260 | DOI | MR | Zbl
[2] Grauert H., Remmert R., Lokale Theorie komplexer Räume, Publ. Math. IHS, Paris, 1964
[3] Gunning R., Rossi H., Analytic functions of several complex variables, Prentice-Hall Inc., Englewood Cliffs, N. J., 1965 | MR | Zbl
[4] Kodaira K., Nirenberg L., Spencer D. C., “On the existence of deformations of complex analytic structures”, Ann. Math., 68 (1958), 450–459 | DOI | MR | Zbl
[5] Fuks B. A., Vvedenie v teoriyu analiticheskikh funktsii mnogikh kompleksnykh peremennykh, Fizmatgiz, M., 1962 | MR
[6] Erve M., Funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1965 | MR