On the \v Ceby\v sev quadrature formula
Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1115-1138.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we examine several weight functions for which the Čebyšev quadrature formula is valid. A method is given in the general case by means of which the degree of precision of the formula may be estimated.
@article{IM2_1969_3_5_a10,
     author = {J. Geronimus},
     title = {On the \v {Ceby\v} sev quadrature formula},
     journal = {Izvestiya. Mathematics },
     pages = {1115--1138},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a10/}
}
TY  - JOUR
AU  - J. Geronimus
TI  - On the \v Ceby\v sev quadrature formula
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 1115
EP  - 1138
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a10/
LA  - en
ID  - IM2_1969_3_5_a10
ER  - 
%0 Journal Article
%A J. Geronimus
%T On the \v Ceby\v sev quadrature formula
%J Izvestiya. Mathematics 
%D 1969
%P 1115-1138
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a10/
%G en
%F IM2_1969_3_5_a10
J. Geronimus. On the \v Ceby\v sev quadrature formula. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 1115-1138. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a10/

[1] Akhiezer N. I., “Pro teoremu akad. S. N. Bernshteina vidnosno kvadraturnoi formuli Chebishova”, Zh. In-ta matematiki AN USSR, 3 (1937), 75–82 | Zbl

[2] Akhiezer N. I., Krein M. G., “Deyaki zauvazheniya pro koefitsienti kvadraturnikh formul Gauss'ovskogo tipu”, Tr. Odesskogo gosuniversiteta, t. II, 1938, 29–38

[3] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[4] Bernshtein S. N., “O formulakh kvadratur Kotesa i Chebysheva”, Dokl. AN SSSR, 14:6 (1937), 323–327

[5] Geronimus Ya. L., “On some quadrature-formulae”, Izv. AN SSSR. Otdelenie fiz.-matem. nauk, 1930, 399–408

[6] Geronimus Ya. L., “O nekotorykh kvadraturnykh formulakh”, Dokl. AN SSSR, 65:4 (1949), 437–440 | MR | Zbl

[7] Geronimus Ya. L., “O stepeni tochnosti kvadraturnykh formul”, Dokl. AN SSSR, 18:3 (1949), 437–440

[8] Geronimus Ya. L., “O zavisimosti mezhdu poryadkom rosta ortonormalnykh mnogochlenov i kharakterom oblozheniya”, Matem. sb., 61(103) (1963), 65–79 | MR | Zbl

[9] Geronimus Ya. L., “O skhodimosti interpolyatsionnogo protsessa Lagranzha s uzlami v kornyakh ortogonalnykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 27 (1963), 529–560 | MR | Zbl

[10] Geronimus Ya. L., “On a set of polynomials”, Ann. Math. (II), 31:4 (1930), 681–686 | DOI | MR | Zbl

[11] Segë G., Optogonalnye mnogochleny, Fizmatgiz, M., 1962

[12] Chebyshev P. L., “O kvadraturakh”, Polnoe sobranie sochinenii, t. III, 1948, 49–62

[13] Erdös P., Turan P., “On interpolation. II”, Ann. Math., 39:4 (1938), 703–724 | DOI | MR | Zbl

[14] Freud G., “Über einen Satz von P. Erdös und P. Turan”, Acta Math. Acad. Sci. Hung., 4 (1953), 255–266 | DOI | MR | Zbl

[15] Shohat J., “Application of orthogonal Tchebycheff polynomials to Lagrangean interpolation and to the general theory of polynomials”, Annali di Matematica, 18 (1939), 208–238 | DOI | MR

[16] Shohat J., Tamarkin J., The problem of moments, New York, 1943

[17] Ullman J. L., “A class of weight functioius for which Tchebycheff quadrature is possible”, Bull. Amer. Math. Soc., 72:6 (1966), 1073–1075 | DOI | MR | Zbl