Operational calculus on a~complex semisimple Lie group
Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 881-916.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every complex semisimple Lie algebra $\mathfrak g$ we construct a so-called operational calculus, which consists in the isomorphic embedding of $\mathfrak g$ along with its associative hull $\mathfrak G$ into a certain algebra of operator polynomials. We investigate the image of $\mathfrak G$ under this embedding; the resulting theorems comprise the algebraic analog of the functional duality theorems of harmonic analysis (theorems of Paley–Wiener type).
@article{IM2_1969_3_5_a0,
     author = {D. P. Zhelobenko},
     title = {Operational calculus on a~complex semisimple {Lie} group},
     journal = {Izvestiya. Mathematics },
     pages = {881--916},
     publisher = {mathdoc},
     volume = {3},
     number = {5},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a0/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Operational calculus on a~complex semisimple Lie group
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 881
EP  - 916
VL  - 3
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a0/
LA  - en
ID  - IM2_1969_3_5_a0
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Operational calculus on a~complex semisimple Lie group
%J Izvestiya. Mathematics 
%D 1969
%P 881-916
%V 3
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a0/
%G en
%F IM2_1969_3_5_a0
D. P. Zhelobenko. Operational calculus on a~complex semisimple Lie group. Izvestiya. Mathematics , Tome 3 (1969) no. 5, pp. 881-916. http://geodesic.mathdoc.fr/item/IM2_1969_3_5_a0/

[1] Gelfand I. M., Graev M. I., “Preobrazovaniya Fure bystro ubyvayuschikh funktsii na kompleksnykh poluprostykh gruppakh”, Dokl. AN SSSR, 131:3 (1960), 496–499 | MR

[2] Gelfand I. M., Naimark M. A., Unitarnye predstavleniya klassicheskikh grupp, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 36, 1950 | MR | Zbl

[3] Zhelobenko D. P., “O garmonicheskom analize funktsii na poluprostykh kompleksnykh gruppakh Li. I”, Izv. AN SSSR. Ser. matem., 27:6 (1963), 1343–1394 | MR | Zbl

[4] Zhelobenko D. P., “Simmetriya v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Funktsionalnyi analiz i ego prilozheniya, I:2 (1967), 15–38

[5] Zhelobenko D. P., “Analiz neprivodimosti v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Izv. AN SSSR. Ser. matem., 32 (1968), 108–133

[6] Zhelobenko D. P., Kompleksnye gruppy Li i ikh predstavleniya, Nauka, M., 1970 | MR | Zbl

[7] Zhelobenko D. P., “Operatsionnoe ischislenie i teoremy tipa Peli–Vinera dlya poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 170:6 (1966), 1243–1246

[8] Zhelobenko D. P., Naimark M. A., “Opisanie vpolne neprivodimykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 171:1 (1966), 25–28 | MR | Zbl

[9] Zhelobenko D. P., “Analog teorii Kartana–Veilya dlya beskonechnomernykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 175:1 (1967), 24–27 | MR

[10] Kostant B., “Lie groups representations on polynomial rings”, Amer. J. Math., 85 (1963), 327–404 | DOI | MR | Zbl

[11] Parthasarathy K., Ranga Rao R., Varadarajan V. C., “Representations of complex semisimple Lie groups and Lie algebras”, Ann. Math., 85:3 (1967), 383–429 | DOI | MR | Zbl

[12] Teoriya algebr Li, topologiya grupp Li, Seminar “Sofus Li”, IL, M., 1962

[13] Chevalley C., “The Betti numbers of the exceptional simple Lie groups”, Proceedings of the International Congress of Mathematicians, vol. 2 (Cambridge, Mass., 1950), Amer. Math. Soc., Providence, R. I., 1952, 21–24 | MR

[14] Chevalley C., “Invariants of finite groups generated by reflections”, Amer. J. Math., 77 (1955), 778–782 | DOI | MR | Zbl