On properties of an incomplete system of functions close to powerfunctions
Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 643-670

Voir la notice de l'article provenant de la source Math-Net.Ru

On the segment $[0,1]$ we consider a system of functions $\{x^{\lambda_\nu}[1+\varepsilon_\nu(x)]\}$, where the $\varepsilon_\nu(x)$ are small in a definite sense, $\lambda_\nu>0$, $\sum\limits_1^\infty\frac1{\lambda_\nu}\infty$. We study the functions $y(x)$ which are approximated by linear combinations of functions of this system in $L_p(0,1)$ or in $C[0,1]$ .
@article{IM2_1969_3_3_a8,
     author = {L. A. Leont'eva},
     title = {On properties of an incomplete system of functions close to powerfunctions},
     journal = {Izvestiya. Mathematics },
     pages = {643--670},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a8/}
}
TY  - JOUR
AU  - L. A. Leont'eva
TI  - On properties of an incomplete system of functions close to powerfunctions
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 643
EP  - 670
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a8/
LA  - en
ID  - IM2_1969_3_3_a8
ER  - 
%0 Journal Article
%A L. A. Leont'eva
%T On properties of an incomplete system of functions close to powerfunctions
%J Izvestiya. Mathematics 
%D 1969
%P 643-670
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a8/
%G en
%F IM2_1969_3_3_a8
L. A. Leont'eva. On properties of an incomplete system of functions close to powerfunctions. Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 643-670. http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a8/