A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$
Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 617-632

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria are obtained for sums of the form$\varphi(x)+\psi(y)$ to deviate by the smallest possible amount from a given function $f(x, y)$ in various metrics.
@article{IM2_1969_3_3_a6,
     author = {S. Ya. Havinson},
     title = {A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$},
     journal = {Izvestiya. Mathematics },
     pages = {617--632},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/}
}
TY  - JOUR
AU  - S. Ya. Havinson
TI  - A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 617
EP  - 632
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/
LA  - en
ID  - IM2_1969_3_3_a6
ER  - 
%0 Journal Article
%A S. Ya. Havinson
%T A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$
%J Izvestiya. Mathematics 
%D 1969
%P 617-632
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/
%G en
%F IM2_1969_3_3_a6
S. Ya. Havinson. A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$. Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 617-632. http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/