A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$
Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 617-632.

Voir la notice de l'article provenant de la source Math-Net.Ru

Criteria are obtained for sums of the form$\varphi(x)+\psi(y)$ to deviate by the smallest possible amount from a given function $f(x, y)$ in various metrics.
@article{IM2_1969_3_3_a6,
     author = {S. Ya. Havinson},
     title = {A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$},
     journal = {Izvestiya. Mathematics },
     pages = {617--632},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/}
}
TY  - JOUR
AU  - S. Ya. Havinson
TI  - A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 617
EP  - 632
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/
LA  - en
ID  - IM2_1969_3_3_a6
ER  - 
%0 Journal Article
%A S. Ya. Havinson
%T A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$
%J Izvestiya. Mathematics 
%D 1969
%P 617-632
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/
%G en
%F IM2_1969_3_3_a6
S. Ya. Havinson. A~Chebyshev theorem for the approximation of a~function of two variables by sums of the type $\varphi(x)+\psi(y)$. Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 617-632. http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a6/

[1] Ofman Yu. P., “O nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 25 (1961), 239–252 | MR

[2] Motornyi V. P., “K voprosu o nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Baku, 1965, 66–73 | MR

[3] Motornyi V. P., “K voporsu o nailuchshem priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN SSSR. Ser. matem., 27 (1963), 1211–1214 | MR | Zbl

[4] Romanova Z. S., “O razmernosti mnogogrannikov nailuchshikh priblizhenii v prostranstve nepreryvnykh funktsii”, Litovskii matem. sb., II:2 (1963), 181–191 | MR

[5] Singer I., “On the set of the best approximation of an element in a normed linear space”, Rev. math. pures et appl., V:2 (1960), 388–402 | MR

[6] Tumarkin G. Ts., Khavinson S. Ya., “Kachestvennye svoistva reshenii ekstremalnykh zadach nekotorykh tipov”, Issledovaniya po sovremennym problemam teorii funktsii kompleksnogo peremennogo, M., 1961, 77–95

[7] Akhiezer N. I., Lektsii po teorii approksimatsii, M., 1966

[8] Rivlin T. J., Sibner R. J., “The degree of approximation of certain functions of two variables by a sum of functions of one variable”, Amer. Math. Monthly, 72:10 (1965), 1101–1103 | DOI | MR | Zbl

[9] Hatanson I. P., Teoriya funktsii veschestvennoi peremennoi, M., L., 1950

[10] Kripke B. R., Holmes R. B., “Approximation of bounded functions by continuos functions”, Bull. Amer. Math. Soc., 71:6 (1965), 896–897 | DOI | MR | Zbl

[11] Babaev M.-B. A., “O nailuchshem stepennom priblizhenii funktsii dvukh peremennykh funktsiyami vida $\varphi(x)+\psi(y)$”, Izv. AN AzerbSSR. Ser. fiz.-matem. i tekhn. nauk, 6 (1962), 25–39 | MR

[12] Babaev M.-B. A., “O nailuchshem priblizhenii funktsii mnogikh peremennykh summami funktsii odnoi peremennoi v obobschennom prostranstve Lebega”, Issledovaniya po teorii differentsialnykh uravnenii i teorii funktsii, Baku, 1965, 11–24

[13] Babaev M.-B. A., “O edinstvennosti nailuchshei priblizhayuschei funktsii pri priblizhenii funktsii mnogikh peremennykh summami funktsii odnoi peremennoi v obobschennom prostranstve Lebega”, Izv. AN AzerbSSR. Ser. fiz.-matem. i tekhn. nauk, 3 (1965), 8–14 | MR | Zbl

[14] Babaev M.-B. A., “Ob otsenke i nakhozhdenii znacheniya nailuchshego priblizheniya funktsii mnogikh peremennykh summami funktsii odnoi peremennoi v obobschennom prostranstve Lebega”, Nekotorye voprosy funktsionalnogo analiza i ego primenenii, Baku, 1965, 17–22 | MR

[15] Singer I., “Caractérisation des éléments de meilleure approximation dans un espace de Banach quelconque”, Acta Sci. Math., 17 (1956), 181–189 | MR | Zbl

[16] Pomanovskii I. V., Sudakov V. N., “O suschestvovanii nezavisimykh razbienii”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 79, 1965, 5–10

[17] Linnik Yu. V., Statisticheskie zadachi s meshayuschimi parametrami, gl. Kh, § 2, M., 1966