Commutative symmetric operator algebras in a~Pontrjagin space
Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 515-535.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the articles of M. A. Na\v{i}mark a study has been made of commutative symmetric algebras of bounded operators in the space $\mathsf\Pi_k$. A model was constructed within whose framework all these algebras can be realized, and conditions were found for their unitary equivalence. In the present article a study is made of Na\v{i}ark's model, and some alterations are proposed which lead to a number of important simplifications. We single out the classes of so-called singular and regular algebras; the study of an arbitrary algebra reduces to the study of these. A complete description is given of regular algebras that are closed with respect to the operator norm.
@article{IM2_1969_3_3_a3,
     author = {A. I. Loginov},
     title = {Commutative symmetric operator algebras in {a~Pontrjagin} space},
     journal = {Izvestiya. Mathematics },
     pages = {515--535},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a3/}
}
TY  - JOUR
AU  - A. I. Loginov
TI  - Commutative symmetric operator algebras in a~Pontrjagin space
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 515
EP  - 535
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a3/
LA  - en
ID  - IM2_1969_3_3_a3
ER  - 
%0 Journal Article
%A A. I. Loginov
%T Commutative symmetric operator algebras in a~Pontrjagin space
%J Izvestiya. Mathematics 
%D 1969
%P 515-535
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a3/
%G en
%F IM2_1969_3_3_a3
A. I. Loginov. Commutative symmetric operator algebras in a~Pontrjagin space. Izvestiya. Mathematics , Tome 3 (1969) no. 3, pp. 515-535. http://geodesic.mathdoc.fr/item/IM2_1969_3_3_a3/

[1] Naimark M. A., “O perestanovochnykh unitarnykh operatorakh v prostranstve $\Pi_k$”, Dokl. AN SSSR, 149 (1963), 1261–1263 | MR | Zbl

[2] Naimark M. A., “O kommutativnykh algebrakh operatorov v prostranstve $\Pi_1$”, Dokl. AN SSSR, 156 (1964), 734–737 | MR

[3] Naimark M. A., “Kommutativnye algebry operatorov v prostranstve $\Pi_1$”, Revue Roumaine de Math. pures et appl., 9:6 (1964), 488–528 | MR

[4] Naimark M. A., “O kommutativnykh simmetrichnykh algebrakh v prostranstve $\Pi_k$”, Dokl. AN SSSR, 161:4 (1965), 767–770 | MR | Zbl

[5] Naimark M. A., “Kommutative symmetriische Algebren in Pontryagischen Räumen $\Pi_k$”, Math. Ann., 162 (1965), 147–171 | DOI | MR

[6] Naimark M. A., “Ob usloviyakh unitarnoi ekvivalentnosti kommutativnykh simmetrichnykh algebr v prostranstve $\Pi_k$”, Dokl. AN SSSR, 160:6 (1965), 1257–1260 | MR | Zbl

[7] Naimark M. A., “Usloviya unitarnoi ekvivalentnosti kommutativnykh simmetrichnykh algebr v prostranstve Pontryagina $\Pi_k$”, Tr. Mosk. matem. ob-va, 15 (1966), 383–399 | MR | Zbl

[8] Iokhvidov I. S., Krein M. G., “Spektralnaya teoriya operatorov v prostranstve s indefinitnoi metrikoi. I”, Tr. Mosk. matem. ob-va, 5 (1956), 367–372 ; “II”, 8 (1959), 413–496 | MR | Zbl

[9] Loginov A. I., “Banakhovy kommutativnye simmetrichnye algebry operatorov v prostranstve Pontryagina $\Pi_1$”, Dokl. AN SSSR, 179:6 (1968), 1276–1278 | MR | Zbl

[10] Danford N., Shvarts Dzh., Lineinye operatory, chast I, IL, M., 1962