Growth of meromorphic functions of finite lower order
Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 391-432

Voir la notice de l'article provenant de la source Math-Net.Ru

A new measure $\beta(a,f)$ of the deviation of a meromorphic function from a number $a$ is introduced in order to study the deeper asymptotic properties of meromorphic functions. It is found that $\beta(a,f)$ possesses many properties analogous to those of the deficiencies introduced by R. Nevanlinna.
@article{IM2_1969_3_2_a5,
     author = {V. P. Petrenko},
     title = {Growth of meromorphic functions of finite lower order},
     journal = {Izvestiya. Mathematics },
     pages = {391--432},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a5/}
}
TY  - JOUR
AU  - V. P. Petrenko
TI  - Growth of meromorphic functions of finite lower order
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 391
EP  - 432
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a5/
LA  - en
ID  - IM2_1969_3_2_a5
ER  - 
%0 Journal Article
%A V. P. Petrenko
%T Growth of meromorphic functions of finite lower order
%J Izvestiya. Mathematics 
%D 1969
%P 391-432
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a5/
%G en
%F IM2_1969_3_2_a5
V. P. Petrenko. Growth of meromorphic functions of finite lower order. Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 391-432. http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a5/