Growth of meromorphic functions of finite lower order
Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 391-432
Voir la notice de l'article provenant de la source Math-Net.Ru
A new measure $\beta(a,f)$ of the deviation of a meromorphic function from a number $a$ is introduced in order to study the deeper asymptotic properties of meromorphic functions. It is found that $\beta(a,f)$ possesses many properties analogous to those of the deficiencies introduced by R. Nevanlinna.
@article{IM2_1969_3_2_a5,
author = {V. P. Petrenko},
title = {Growth of meromorphic functions of finite lower order},
journal = {Izvestiya. Mathematics },
pages = {391--432},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1969},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a5/}
}
V. P. Petrenko. Growth of meromorphic functions of finite lower order. Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 391-432. http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a5/