On a mixed problem for a hyperbolic equation of the second order
Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 357-374

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Laplace transform methods we establish existence theorems for a classical solution of a mixed problem for various forms of hyperbolic operators of the second order.
@article{IM2_1969_3_2_a3,
     author = {V. R. Nosov},
     title = {On a mixed problem for a hyperbolic equation of the second order},
     journal = {Izvestiya. Mathematics },
     pages = {357--374},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a3/}
}
TY  - JOUR
AU  - V. R. Nosov
TI  - On a mixed problem for a hyperbolic equation of the second order
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 357
EP  - 374
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a3/
LA  - en
ID  - IM2_1969_3_2_a3
ER  - 
%0 Journal Article
%A V. R. Nosov
%T On a mixed problem for a hyperbolic equation of the second order
%J Izvestiya. Mathematics 
%D 1969
%P 357-374
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a3/
%G en
%F IM2_1969_3_2_a3
V. R. Nosov. On a mixed problem for a hyperbolic equation of the second order. Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 357-374. http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a3/