The stabilization of solutions of the neralized Cauchy problem for ultraparabolic equations
Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 345-355

Voir la notice de l'article provenant de la source Math-Net.Ru

By using an “integral” representation of the solution of the generalized Cauchy problem for ultraparabolic equations, a necessary and sufficient condition for the stabilization of the solution has been obtained for the class of positive initial functionals. In the class of “bounded with respect to translation” functionals, it has been proved that a necessary and sufficient condition for the stabilization of the solution in a weak sense is the existence of a generalized spherical limiting mean.
@article{IM2_1969_3_2_a2,
     author = {Yu. N. Drozhzhinov},
     title = {The stabilization of solutions of the neralized {Cauchy} problem for ultraparabolic equations},
     journal = {Izvestiya. Mathematics },
     pages = {345--355},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a2/}
}
TY  - JOUR
AU  - Yu. N. Drozhzhinov
TI  - The stabilization of solutions of the neralized Cauchy problem for ultraparabolic equations
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 345
EP  - 355
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a2/
LA  - en
ID  - IM2_1969_3_2_a2
ER  - 
%0 Journal Article
%A Yu. N. Drozhzhinov
%T The stabilization of solutions of the neralized Cauchy problem for ultraparabolic equations
%J Izvestiya. Mathematics 
%D 1969
%P 345-355
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a2/
%G en
%F IM2_1969_3_2_a2
Yu. N. Drozhzhinov. The stabilization of solutions of the neralized Cauchy problem for ultraparabolic equations. Izvestiya. Mathematics , Tome 3 (1969) no. 2, pp. 345-355. http://geodesic.mathdoc.fr/item/IM2_1969_3_2_a2/