Self-adjoint quadratic bundles
Izvestiya. Mathematics , Tome 3 (1969) no. 1, pp. 131-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present article contains a study of the properties of the self-adjoint quadratic bundle $$ Q(\lambda)=\lambda^2{I}+\lambda B+C $$ and the associated quadratic operator equation $$ Z^2+BZ+C=0. $$ The theorems obtained are applied to a number of problems in mathematical physics.
@article{IM2_1969_3_1_a8,
     author = {E. A. Larionov},
     title = {Self-adjoint quadratic bundles},
     journal = {Izvestiya. Mathematics },
     pages = {131--145},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a8/}
}
TY  - JOUR
AU  - E. A. Larionov
TI  - Self-adjoint quadratic bundles
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 131
EP  - 145
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a8/
LA  - en
ID  - IM2_1969_3_1_a8
ER  - 
%0 Journal Article
%A E. A. Larionov
%T Self-adjoint quadratic bundles
%J Izvestiya. Mathematics 
%D 1969
%P 131-145
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a8/
%G en
%F IM2_1969_3_1_a8
E. A. Larionov. Self-adjoint quadratic bundles. Izvestiya. Mathematics , Tome 3 (1969) no. 1, pp. 131-145. http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a8/

[1] Krein M. G., Langer G. K., O nekotorykh matematicheskikh printsipakh lineinoi teorii dempfirovannykh kolebanii kontinuumov, Trudy mezhd. simpoz. po prim. teorii funktsii kompl. perem. v mekhanike sploshnoi sredy, Nauka, M., 1965

[2] Askerov N. G., Krein S. G., Laptev G. I., “Ob odnom klasse nesamosopryazhennykh kraevykh zadach”, Dokl. AN SSSR, 155:3 (1964), 499–502 | MR | Zbl

[3] Ginzburg Yu. P., Iokhvidov I. S., “Issledovaniya po geometrii beskonechnomernykh prostranstv s bilineinoi metrikoi”, Uspekhi matem. nauk, 17:4(106) (1962), 3–56 | MR

[4] Krein M. G., Langer G. K., “O spektralnoi funktsii samosopryazhennykh operatorov v prostranstve s indenfinitnoi metrikoi”, Dokl. AN SSSR, 152:1 (1963), 39–42 | MR | Zbl

[5] Pesonen E., “Über die Spektraldarstellung quadratischer Formen in linearen Räumen mit indefiniter Metrik”, Ann. Acad. Sci. Fenn. Ser. A I, 227 (1956), 1–30 | MR

[6] Kühne R., “Über eine Klasse $J$-selbstadjungierter Operatoren”, Math. Ann., 154 (1964), 56–69 | DOI | MR

[7] Langer H., Spektraltheorie linearen Operatoren in $J$-Rämen, Dresden, 1965

[8] Cordes H. O., “On maximal first order partial differential operators”, Amer. J. Math., 82 (1960), 63–91 | DOI | MR | Zbl

[9] Larionov E. A., “Rasshirenie dualnykh podprostranstv”, Dokl. AN SSSR, 176:3 (1967), 515–517 | MR | Zbl

[10] Phillips R. S., “The extensions of dual subspaces invariant under an algebra”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Acad. Press., 1961, 366–398 | MR

[11] Keldysh M. V., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh nekotorykh klassov nesamosopryazhennykh uravnenii”, Dokl. AN SSSR, 77:1 (1951), 11–14 | Zbl

[12] Krein S. G., “O kolebaniyakh vyazkoi zhidkosti v sosude”, Dokl. AN SSSR, 159:2 (1964), 262–265 | MR

[13] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[14] Matsaev V. I., “Ob odnom klasse vpolne nepreryvnykh operatorov”, Dokl. AN SSSR, 139:3 (1961), 548–552

[15] Pontryagin L. S., “Ermitovy operatory v prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 8 (1944), 243–280 | Zbl

[16] Lidskii V. B., “Usloviya polnoty sistemy kornevykh podprostranstv u nesamosopryazhennykh operatorov s diskretnym spektrom”, Tr. Mosk. matem. ob-va, 8 (1959), 84–220 | MR

[17] Bernstein A. R., Robinson A., “Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos”, Pacific J. of Math., 16:3 (1966), 421–432 | MR

[18] Halmos P. R., “Invariant subspaces of polynomially compact operators”, Pacific J. of Math., 16:3 (1966), 433–437 | MR | Zbl