On the order of approximation by Fej\'er sums
Izvestiya. Mathematics , Tome 3 (1969) no. 1, pp. 37-49

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the degree of approximation almost everywhere by Fejér sums of orthogonal series $\displaystyle\sum^\infty_{k=0}c_k\varphi_k(x)$, where the coefficients $c_k$ satisfy special conditions.
@article{IM2_1969_3_1_a3,
     author = {\`E. A. Storozhenko},
     title = {On the order of approximation by {Fej\'er} sums},
     journal = {Izvestiya. Mathematics },
     pages = {37--49},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a3/}
}
TY  - JOUR
AU  - È. A. Storozhenko
TI  - On the order of approximation by Fej\'er sums
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 37
EP  - 49
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a3/
LA  - en
ID  - IM2_1969_3_1_a3
ER  - 
%0 Journal Article
%A È. A. Storozhenko
%T On the order of approximation by Fej\'er sums
%J Izvestiya. Mathematics 
%D 1969
%P 37-49
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a3/
%G en
%F IM2_1969_3_1_a3
È. A. Storozhenko. On the order of approximation by Fej\'er sums. Izvestiya. Mathematics , Tome 3 (1969) no. 1, pp. 37-49. http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a3/