The algebraic analog of compact complex spaces with a~sufficiently large field of meromorphic functions.~I
Izvestiya. Mathematics , Tome 3 (1969) no. 1, pp. 167-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

Abstract analogs are constructed for $n$-dimensional compact complex spaces with $n$ algebraically independent meromorphic functions; they are called by the author minischemes. The present part of the work contains a number of theorems on morphisms and monoidal transformations of schemes, as well as the definition of minischeme and of a morphism of minischemes and some consequences of these definitions, including the construction of the product of minischemes.
@article{IM2_1969_3_1_a11,
     author = {B. G. Moishezon},
     title = {The algebraic analog of compact complex spaces with a~sufficiently large field of meromorphic {functions.~I}},
     journal = {Izvestiya. Mathematics },
     pages = {167--226},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1969},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a11/}
}
TY  - JOUR
AU  - B. G. Moishezon
TI  - The algebraic analog of compact complex spaces with a~sufficiently large field of meromorphic functions.~I
JO  - Izvestiya. Mathematics 
PY  - 1969
SP  - 167
EP  - 226
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a11/
LA  - en
ID  - IM2_1969_3_1_a11
ER  - 
%0 Journal Article
%A B. G. Moishezon
%T The algebraic analog of compact complex spaces with a~sufficiently large field of meromorphic functions.~I
%J Izvestiya. Mathematics 
%D 1969
%P 167-226
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a11/
%G en
%F IM2_1969_3_1_a11
B. G. Moishezon. The algebraic analog of compact complex spaces with a~sufficiently large field of meromorphic functions.~I. Izvestiya. Mathematics , Tome 3 (1969) no. 1, pp. 167-226. http://geodesic.mathdoc.fr/item/IM2_1969_3_1_a11/

[1] Moishezon B. G., “Ob $n$-mernykh kompaktnykh kompleksnykh mnogoobraziyakh, imeyuschikh $n$ algebraicheski nezavisimykh meromorfnykh funktsii”, Izv. AN SSSR. Ser. mat., 30:1 (1966), 133–174

[2] Moishezon B. G., “Teoremy razresheniya dlya kompaktnykh kompleksnykh prostranstv s dostatochno bolshim polem meromorfnykh funktsii”, Izv. AN SSSR. Ser. mat., 31 (1967), 1385–1414 | Zbl

[3] Hironaka H., “Resolution of singularities of an algebraic variety over a field of characteristic zero”, Ann. Math., 79 (1964), 109–326 | DOI | MR | Zbl

[4] Abhyankar S. S., Resolution of singularities of embedded algebraic surfaces, Academic Press, New York, London, 1966 | MR | Zbl

[5] Grothendieck A., Eléments de Géométrie Algébrique, Institut des Hautes Etudes Scientifiques, Paris, 1961

[6] Gronthendieck A., Fondements de la géométrie algébrique, Extraits du Séminaire Bourbaki (1957–1962), Secrétariat mathématique, Paris, 1962

[7] Hironaka H., Rossi H., “On the equivalence of imbeddings of exceptional complex spaces”, Math. Ann., 156:4 (1964), 313–333 | DOI | MR | Zbl

[8] Hironaka H., “A fundamental lemma on point modifications”, Proc. Conf. Complex Analysis (Minneapolis, 1964), Springer, Berlin, 1965, 194–215 | MR

[9] Shafarevich I. R., Lectures on minimal models and birational transformations of two dimensional schemes, Tata Institute of fundamental research, Bombay, 1966 | MR | Zbl